
MyID Enterprise
Version 12.10

MyID Authentication Guide

Document reference: IMP2009-12.10.0-Enterprise April 2024

Lutterworth Hall, St Mary's Road, Lutterworth, Leicestershire, LE17 4PS, UK
www.intercede.com | info@intercede.com | @intercedemyid | +44 (0)1455 558111

MyID Authentication Guide Page 2 of 86

Copyright
© 2001-2024 Intercede Limited. All rights reserved.

Information in this document is subject to change without notice. The software described in
this document is furnished exclusively under a restricted license or non-disclosure
agreement. Copies of software supplied by Intercede Limited may not be used resold or
disclosed to third parties or used for any commercial purpose without written authorization
from Intercede Limited and will perpetually remain the property of Intercede Limited. They
may not be transferred to any computer without both a service contract for the use of the
software on that computer being in existence and written authorization from Intercede
Limited.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or any means electronic or mechanical, including photocopying and recording for
any purpose other than the purchaser's personal use without the written permission of
Intercede Limited.

Whilst Intercede Limited has made every effort in the preparation of this manual to ensure the
accuracy of the information, the information contained in this manual is delivered without
warranty, either express or implied. Intercede Limited will not be held liable for any damages
caused, or alleged to be caused, either directly or indirectly by this manual.

Licenses and Trademarks
The Intercede® and MyID® word marks and the MyID® logo are registered trademarks of
Intercede in the UK, US and other countries.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Other brands
and their products are trademarks or registered trademarks of their respective holders and
should be noted as such. All other trademarks acknowledged.

Apache log4net
Copyright 2004-2021 The Apache Software Foundation

This product includes software developed at

The Apache Software Foundation (https://www.apache.org/).

MyID Authentication Guide Page 3 of 86

Conventions used in this document
• Lists:

• Numbered lists are used to show the steps involved in completing a task when the
order is important.

• Bulleted lists are used when the order is unimportant or to show alternatives.

• Bold is used for menu items and for labels.

For example:

• Record a valid email address in ‘From’ email address.

• Select Save from the File menu.

• Italic is used for emphasis:

For example:

• Copy the file before starting the installation.

• Do not remove the files before you have backed them up.

• Bold and italic hyperlinks are used to identify the titles of other documents.
For example: "See the Release Notes for further information."
Unless otherwise explicitly stated, all referenced documentation is available on the
product installation media.

• A fixed width font is used where the identification of spaces is important, including
filenames, example SQL queries and any entries made directly into configuration files or
the database.

• Notes are used to provide further information, including any prerequisites or
configuration additional to the standard specifications.

For example:

Note: This issue only occurs if updating from a previous version.

• Warnings are used to indicate where failure to follow a particular instruction may result in
either loss of data or the need to manually configure elements of the system.

For example:

Warning: You must take a backup of your database before making any changes to it.

MyID Authentication Guide Page 4 of 86

Contents

MyID Authentication Guide 1
Copyright 2
Conventions used in this document 3
Contents 4
1 Introduction 6
2 Setting up the standalone authentication service 7

2.1 Installing the standalone authentication service 8
2.2 Configuring the standalone authentication service 8
2.3 Logging the standalone authentication service 10

3 MyID AD FS Adapter OAuth 11
3.1 Overview 11
3.2 AD FS Adapter OAuth prerequisites 12
3.3 Setting up the ADFS Auth web service 12

3.3.1 Installing the ADFS Auth web service 13
3.3.2 Configuring the ADFS Auth web service 13
3.3.3 Configuring the AD FS server to communicate with the ADFS Auth web service 14
3.3.4 Logging the ADFS Auth web service 14

3.4 Configuring the standalone authentication service for AD FS 14
3.4.1 Generating a shared secret 15
3.4.2 Updating the web.oauth2.ext configuration file 15

3.5 Installing the AD FS Adapter OAuth 18
3.5.1 Uninstalling the AD FS Adapter OAuth 22

3.6 Managing the AD FS Adapter OAuth 23
3.6.1 Configuration file 23
3.6.2 Encrypting the client secret 24
3.6.3 Managing themes 25
3.6.4 Logging for the AD FS Adapter OAuth 25

3.7 Troubleshooting 26
4 Authenticating using OpenID Connect 30

4.1 Configuring the web service for OpenID Connect 32
4.1.1 Creating a shared secret 33
4.1.2 Editing the configuration file 34
4.1.3 Configuring authentication to skip the MyID Authentication screen 41

4.2 Obtaining an identity token 42
4.2.1 Generating a PKCE code verifier and code challenge 42
4.2.2 Requesting an authorization code 43
4.2.3 Requesting an identity token 49

4.3 Troubleshooting 50
5 Authenticating for embedded Operator Client screens 53

5.1 Configuring web.oauth2 for user-based authentication 53
5.2 Obtaining an access token 54

5.2.1 Example requests 55
5.3 Posting the access token 57

MyID Authentication Guide Page 5 of 86

6 Setting up an external identity provider 59
6.1 Configuring Microsoft Entra 61

6.1.1 Configuring Microsoft Entra as an external identity provider 61
6.1.2 Encrypting the client secret 62
6.1.3 Configuring the web.oauth2 server for Microsoft Entra 63
6.1.4 Configuring MyID to use Microsoft Entra 65
6.1.5 Next steps 65

6.2 Configuring OpenID Connect 66
6.2.1 Configuring OpenID Connect as an external identity provider 66
6.2.2 Encrypting the client secret 67
6.2.3 Configuring the web.oauth2 server for OpenID Connect 68
6.2.4 Configuring MyID to use OpenID Connect 71
6.2.5 Next steps 71

6.3 Configuring other types of identity provider 72
6.4 Mapping attributes 73

6.4.1 Finding a list of available claims 73
6.4.2 Matching attributes 74
6.4.3 Mapping attributes 75

6.5 Example Microsoft Entra settings 79
6.6 Example OpenID Connect settings 81

6.6.1 OpenID Connect settings for Microsoft Entra 81
6.6.2 OpenID Connect settings for Okta 83

7 Reporting on the authentication database 85

MyID Authentication Guide Page 6 of 86

1 Introduction
The MyID® authentication service (web.oauth2) provides authentication services for the
MyID Operator Client and the MyID Core API.

You can also use the authentication service in the following ways:

• Using a standalone version of the authentication service (web.oauth2.ext) for high
availability operations.

See section 2, Setting up the standalone authentication service.

• With an ADFS adapter for FIDO authenticators using OAuth.

See section 3,MyID AD FS Adapter OAuth.

• Using OpenID to provide authentication for an external system.

See section 4, Authenticating using OpenID Connect.

To assist you in using these features, the MyID authentication service provides the following:

• Reporting on audited actions stored in the authentication database.

See section 7, Reporting on the authentication database.

MyID Authentication Guide Page 7 of 86

2 Setting up the standalone authentication service
The standard web.oauth2 MyID authentication service (web.oauth2) runs on the MyID web
server with the other MyID web services, and communicates with the MyID database through
the MyID application server. This places a reliance on the entire MyID system; for a mission-
critical authentication service, providing access to crucial systems, you may need to use a
standalone version of this service – web.oauth2.ext – that does not rely on the MyID
infrastructure.

For example, the MyID AD FS Adapter OAuth relies on the standalone version of the web
service instead of the standard MyID authentication service; see section 3,MyID AD FS
Adapter OAuth for details. You can choose to use either the standard or standalone versions
of the web service when obtaining an identity token using OpenID; see section 4,
Authenticating using OpenID Connect.

The standalone authentication service communicates directly with the MyID main and
authentication databases; as the service is used for authentication and not registration, it
needs read-only access to the main MyID database, and needs read-write access only for the
authentication database.

Note: Currently, the standalone authentication service supports only the FIDOmethod
authentication; you cannot use the standalone authentication service to provide
authentication using MyID security phrases, smart cards, or authentication codes, for
example.

This section contains information on:

• Installing the web service.

See section 2.1, Installing the standalone authentication service.

• Configuring the web service.

See section 2.2, Configuring the standalone authentication service.

• Logging the web service.

See section 2.3, Logging the standalone authentication service.

MyID Authentication Guide Page 8 of 86

2.1 Installing the standalone authentication service
You can install the standalone authentication web service on the MyID web server, or on its
own dedicated web server. The requirements for a dedicated web server are the same as for
the main MyID web server; in addition, the dedicated web server must be able to
communicate with the MyID main and authentication databases; while the web.oauth2 web
service communicates with the database through the MyID application server, the
web.oauth2.ext web service removes this reliance on the application server and
communicates directly with the databases.

You are recommended to install your MyID system and configure it before you install the
standalone web service.

Because the standalone authentication web service communicates directly with the database
rather than going through the application server, you do not need to install COM+ proxies, but
you do need to install the following database connectivity software:

• Microsoft OLE DB Driver 19 for SQL Server (MSOLEDBSQL).

This driver is available from Microsoft.

For more information about the Microsoft OLE DB Driver, see the Installing the database
software section in the Installation and Configuration Guide.

• SQL Server Native Client 11

This is available in the SQL Server Feature Pack.

To install the standalone authentication service, run the MyID Installation Assistant, and on
the Server Roles and Features screen, select only the External Authentication Server >
web.oauth2.ext option.
For more information, see the Selecting the server roles and features section in the
Installation and Configuration Guide.

2.2 Configuring the standalone authentication service
When you install the standalone authentication service, the installation program configures
the service with the database connection details for your main MyID database and the
MyID authentication database. These settings are initially stored in the appsettings.json
file. If you need to update the database connection details, for example if you are using SQL
Authentication and the password has changed, you can edit the
appsettings.Production.json file to override the settings in the appsettings.json file.

Note: If you subsequently install or upgrade MyID again and provide different database
connection information in the MyID installation program, and you have set the
ConnectionStringCore or ConnectionStringAuth options in the
appsettings.Production.json file, the values you enter in the installation program are
ignored; the appsettings.Production.json file is never updated by the installation
program, and always takes precedence over the appsettings.json file.

Installation and Configuration Guide.pdf
Installation and Configuration Guide.pdf

MyID Authentication Guide Page 9 of 86

To edit the database connection strings:

1. In a text editor, open the appsettings.Production.json file for the web service.

By default, this is:
C:\Program

Files\Intercede\MyID\web.oauth2.ext\appsettings.Production.json

This file is the override configuration file for the appsettings.json file for the web
service.

2. Set the following options in the MyID:Database section:

• ConnectionStringCore – contains the connection string for the main
MyID database.

• ConnectionStringAuth – contains the connection string for the MyID authentication
database.

You can copy the original details from the appsettings.json file if necessary.

Your appsettings.Production.json file may already contain commented-out entries
for these values; remove the double-slash // to uncomment the entries.

MyID Authentication Guide Page 10 of 86

3. If you need to update the password in the appsettings.json file, you can use the
Password Change Tool; see theWorking with SQL accounts section in the Password
Change Tool guide.
Alternatively, if you want to edit the settings in the override
appsettings.Production.json file, you must update the password manually:

a. Log on to the server as the MyID Authentication user.

This is the user under which the standalone authentication service runs – you can
check the identity used for themyid.web.oauth2.ext.pool application pool to
confirm.

b. Open aWindows PowerShell command prompt, and navigate to the web.oauth2.ext
web service folder.

By default, this is:
C:\Program Files\Intercede\MyID\web.oauth2.ext\

c. Run the following PowerShell script:
.\DPAPIEncrypt.ps1 <password>

For example:
.\DPAPIEncrypt.ps1 mypassword1234

The script outputs an encrypted copy of your new password; for example:
PS C:\Program Files\Intercede\MyID\web.oauth2.ext>

.\DPAPIEncrypt.ps1 mypassword1234

AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAA7X [...]

cJ0kGfzCRQAAAApCVkhSoyCs4xotykfdKZ3w9gitg==

(Encrypted output string truncated for documentation purposes.)

d. Copy the encrypted password, then add it to the PasswordDPAPI field in the
connection string.

For example:
"ConnectionStringCore": "Database=MyID; Server=myserver.example.com;

User Id=sa; PasswordDPAPI=AQAAANCMnd8BFdERjHoAwE/Cl+sBAAAA7X [...]

cJ0kGfzCRQAAAApCVkhSoyCs4xotykfdKZ3w9gitg==;",

4. Save the appsettings.Production.json file.

5. Recycle the web service app pool:

a. On the MyID web server, in Internet Information Services (IIS) Manager, select
Application Pools.

b. Right-click themyid.web.oauth2.ext.pool application pool, then from the pop-up
menu click Recycle.

This ensures that the web service has picked up the changes to the configuration file.

2.3 Logging the standalone authentication service
You can configure logging for the web service; see theMyID REST and authentication web
services section in the Configuring Logging guide for details.

Password Change Tool.pdf
Password Change Tool.pdf
Configuring Logging.pdf

MyID Authentication Guide Page 11 of 86

3 MyID AD FS Adapter OAuth
The AD FS Adapter OAuth provides Active Directory Federation Services (AD FS) with
FIDO2 authentication mechanism, using a FIDO2 security key to allow identity access to a
Relying Party Trust. You can configure the AD FS Adapter OAuth as a primary or additional
authentication step using the AD FS Manager Tool.

You must deploy the AD FS Adapter OAuth to your AD FS servers. You can install the AD FS
Adapter OAuth on a system running Windows Server 2016 or 2019; however, only Windows
Server 2019 supports the use of additional authentication methods as primary authenticators.

This section contains the following information:

• An overview of the AD FS authentication process.

See section 3.1,Overview.

• AD FS prerequisites.

See section 3.2, AD FS Adapter OAuth prerequisites.

• Information on installing and configuring the ADFS Auth web service.

See section 3.3, Setting up the ADFS Auth web service.

• Details on using the standalone authentication service for AD FS authentication.

See section 3.4, Configuring the standalone authentication service for AD FS.

• Instructions for installing the AD FS Adapter OAuth plug-in on the AD FS server.

See section 3.5, Installing the AD FS Adapter OAuth.

• Information on configuration options and themes for the AD FS Adapter OAuth.

See section 3.6,Managing the AD FS Adapter OAuth.

• Troubleshooting issues with the AD FS Adapter OAuth.

See section 3.7, Troubleshooting.

3.1 Overview
The AD FS authentication process has the following components:

• AD FS Adapter OAuth – a plug-in for the AD FS server that provides access to the
MyID authentication system.

• ADFS Auth web service – an intermediary web service used to store information for the
AD FS Adapter OAuth.

• Standalone authentication web service (web.oauth2.ext) – a standalone version of the
MyID authentication web service (web.oauth2) which is used to take the user through the
authentication process using their FIDO device.

With the AD FS Adapter OAuth installed and configured on AD FS, providing either primary or
additional authentication for a Relying Party Trust, a user starts the authentication process by
trying to access the Relying Party Trust service when they enter their email address at the
login screen.

MyID Authentication Guide Page 12 of 86

AD FS asks the AD FS Adapter OAuth if the email address provided is one it recognizes. The
AD FS Adapter OAuth currently assumes all email addresses passed to it are acceptable. AD
FS starts the authentication process, calling into the AD FS Adapter OAuth and passing in the
claim containing the user’s email address.

The AD FS Adapter OAuth then starts the authentication process by displaying a web page,
which posts the information to the ADFS Auth web service that will be needed to complete the
authentication process with AD FS. The ADFS Auth web service stores this information,
whereupon the AD FS Adapter OAuth requests an authorization from the web.oauth2.ext
standalone authentication web service.

The standalone authentication web service then takes the user through the authentication
process; the user confirms their identity using their registered FIDO authenticator. The
authentication web service then redirects to the ADFS Auth web service, passing it the result
of the authentication process. The ADFS Auth web service retrieves the information it stored
at the start of the process, then passes it back to the AD FS Adapter OAuth along with the
result of the authentication process. If the authentication process successfully provided an
authorization code, the AD FS Adapter OAuth uses this to obtain an identity token from the
standalone authentication web service.

The token is then validated. If validation succeeds, the claims required for a successful AD
FS authentication are returned by the AD FS Adapter OAuth to AD FS, and AD FS allows
access to the Relying Party Trust.

3.2 AD FS Adapter OAuth prerequisites
The following prerequisites must be in place before you install the AD FS Adapter OAuth:

• Relying Party Trust

A Relying Party Trust must exist under AD FS Management > AD FS > Relying Party
Trusts to add the AD FS Adapter as a primary or additional authentication method.

• Access Control Policy

A suitable access control policy for controlling access to the Relying Party Trust under
AD FS Management > AD FS > Access Control Policies; for example, “Permit
everyone and require MFA” if the AD FS Adapter is used as an additional authentication
method, or “Permit everyone” if the AD FS Adapter is used as a primary authentication
method.

• AD FS Service Account

The AD FS service account must be a member of the “domain users”. The AD FS service
account needs “log on as a service” permission. To set this option, from AD FS Server
Manager > Tools > Local Security Policy > Security Settings > Local Policies >
User Rights Assignment > Log on as a service > Local Security Setting tab > Add
User or Group, add the AD FS service account user.

3.3 Setting up the ADFS Auth web service
The ADFS Auth web service is an intermediary web service used to store information for the
AD FS Adapter OAuth. You can install it on the same server as the standalone authentication
service (web.oauth2.ext).

For information on how the ADFS Auth web service fits into the AD FS authentication
architecture, see section 3.1,Overview.

MyID Authentication Guide Page 13 of 86

3.3.1 Installing the ADFS Auth web service
To install the standalone authentication service, run the MyID Installation Assistant, and on
the Server Roles and Features screen, select External Authentication Server > AD FS
Auth Web Service option.
You can install this service on the same server as the standalone authentication service
(web.oauth2.ext).

For more information about running the MyID Installation Assistant, see the Selecting the
server roles and features section in the Installation and Configuration Guide.

3.3.2 Configuring the ADFS Auth web service
Once you have installed the ADFS Auth web service, you must configure the service with the
location of your AD FS. This allows the ADFS Auth web service to accept connections from
the AD FS Adapter OAuth installed on the AD FS server.

To configure the ADFS Auth web service:

1. In a text editor, open the appsettings.Production.json file for the web service.

By default, this is:
C:\Program Files\Intercede\MyID\AdfsAuth\appsettings.Production.json

This file is the override configuration file for the appsettings.json file for the web
service. If this file does not already exist, you must create it in the same folder as the
appsettings.json file.

2. Set the following:
"AllowedOrigins": ["https://<ADFS domain>"]

where <ADFS domain> is the domain of your AD FS server; for example:
"AllowedOrigins": ["https://adfs.example.com"]

3. Save the appsettings.Production.json file.

4. Recycle the web service app pool:

a. On the MyID web server, in Internet Information Services (IIS) Manager, select
Application Pools.

b. Right-click the AdfsAuthPool application pool, then from the pop-up menu click
Recycle.

This ensures that the web service has picked up the changes to the configuration file.

Installation and Configuration Guide.pdf

MyID Authentication Guide Page 14 of 86

3.3.3 Configuring the AD FS server to communicate with the ADFS Auth web
service
On the AD FS server, you must configure AD FS to set the Content-Security-Policy to
allow it to http POST to the domain on which the ADFS Auth web service runs.

For example, run the following PowerShell commands:

Set-AdfsResponseHeaders -SetHeaderName "Content-Security-Policy" -SetHeaderValue "default-
src 'self' <domainOfAdfsAuthWS> 'unsafe-inline' 'unsafe-eval'; img-src 'self' data:;"
net stop adfssrv
net start adfssrv

where <domainOfAdfsAuthWS> is the web domain on which the ADFS Auth web service
runs.

3.3.4 Logging the ADFS Auth web service
You can configure logging for the web service; see theMyID REST and authentication web
services section in the Configuring Logging guide for details.

3.4 Configuring the standalone authentication service for AD FS
The standalone authentication service (web.oauth2.ext) provides a connection to the MyID
database and allows the AD FS Adapter to authenticate to AD FS using credentials issued
using MyID. You must configure the web.oauth2.ext service with a shared secret to secure
the connection between the adapter and the service. You must also add the URL of the ADFS
Auth web service to the list of allowed redirect URLs.

You must make sure that the standalone authentication service is installed. For more
information about the web.oauth2.ext standalone authentication service, see section 2,
Setting up the standalone authentication service.

If web.oauth2.ext (which is authenticating the user) is on a different server from web.oauth2
(which registered the FIDO credential), ensure there is a load balancer or reverse proxy in
front of both of these servers, so that the client computer sees the same domain in the URL
for both of these machines.

Configuring Logging.pdf

MyID Authentication Guide Page 15 of 86

3.4.1 Generating a shared secret
MyID uses a shared secret to secure the connection between the AD FS Adapter and the
standalone authentication service.

Important: You must keep the shared secret safe, as it can provide access to the features of
the MyID authentication service, so must be an unguessable value; for this reason, you are
recommended to generate a GUID for the shared secret. Do not use the same shared secret
for other purposes such as end-user authentication or server-to-server API authentication.

You can use the provided GenClientSecret.ps1 PowerShell script to generate a GUID and
create a SHA-256 hash converted to Base64:

1. On the web server, open aWindows PowerShell command prompt.

2. Navigate to the web.oauth2.ext folder.

By default, this is:
C:\Program Files\Intercede\MyID\web.oauth2.ext

3. Run the script:
.\GenClientSecret.ps1

The script generates a GUID to use as the shared secret, creates a SHA-256 hash from
the GUID, then converts the hash to Base64; for example:
PS C:\Program Files\Intercede\MyID\web.oauth2> .\GenClientSecret.ps1

client secret: 82564d6e-c4a6-4f64-a6d4-cac43781c67c

SHA256+base64: kv31VP5z/oKS0QMMaIfZ2UrhmQOdgAPpXV/vaF1cymk=

Important: Do not use this example secret in your own system.

4. Take a note of the following values:

• client secret – you need this value for the AD FS Client Secret screen in the AD
FS Adapter installation program.

See section 3.5, Installing the AD FS Adapter OAuth.

• SHA256+base64 – you need this value for the ClientSecrets parameter in the
web.oauth2.ext web service configuration file. The server does not store the secret,
only the Base64-encoded hash.

See section 3.4.2, Updating the web.oauth2.ext configuration file.

Note: If you are going to add the secret to the AD FS Adapter configuration file manually
rather than using the installation program (for example, if you have an installed system, and
you want to update the client secret periodically) you are strongly recommended to encrypt
the secret using the provided DPAPIEncrypt.ps1 PowerShell script before adding it to the
configuration file; see section 3.6.2, Encrypting the client secret for details. If you use the
installation program, the secret is encrypted automatically.

3.4.2 Updating the web.oauth2.ext configuration file
You must update the web.oauth2.ext configuration file to include the secret you have
generated to secure the connection between the AD FS Adapter and the standalone
authentication service, and add the URL of the ADFS Auth web service to the list of allowable
redirect URIs.

To configure the web.oauth2.ext service:

MyID Authentication Guide Page 16 of 86

1. In a text editor, open the appsettings.Production.json file for the web service.

By default, this is:
C:\Program

Files\Intercede\MyID\web.oauth2.ext\appsettings.Production.json

This file is the override configuration file for the appsettings.json file for the web
service.

You must edit the myid.adfs client section in this configuration file, and provide the
required configuration settings.

2. Edit the following section in the appsettings.Production.json file:

"Clients":[
{},
{},
{

"ClientId":"myid.adfs",
"ClientName":"MyID ADFS",
"ClientSecrets":[

{
"Value":"<secret>"

 }
],

"RedirectUris":[
"https://<auth service domain>/AdfsAuth/home/AdfsAuth"

],
"Properties":

{
"Skin": "popover",
"EnableFido2LoginBasicAssurance": false,
"EnableFido2LoginHighAssurance": true

 }
 }
 }
]

Important:When you have clients in the appsettings.json file and the
appsettings.Production.json file, you must make sure the Production file does not
overwrite the entries in the base file. In these settings files, entries in arrays are
determined by their index; therefore if you have two client entries in the
appsettings.json file before the myid.adfs entry, you must include two blank array
entries {}, in the appsettings.Production.json file before you include the details for
the myid.adfs client.

3. Set the following values:

• <secret> – set this to the Base64-encoded SHA-256 hash of the secret you created;
for example:
"Value":"kv31VP5z/oKS0QMMaIfZ2UrhmQOdgAPpXV/vaF1cymk="

See section 3.4.1,Generating a shared secret.

• <auth service domain> – set this to the domain of the MyID ADFS Auth server; for
example:
"https://myserver.example.com/AdfsAuth/home/AdfsAuth"

MyID Authentication Guide Page 17 of 86

You can set the following Properties:

• Skin – currently only popover is available as a skin option for the authentication GUI.
The authentication web page shows a background image with a popover
representing the authentication UI; this is suitable for large windows. If you are
displaying the authentication page in a small popup window, you can omit this option.

• EnableFido2LoginBasicAssurance – set this to true to allow authentication using
FIDO basic assurance authenticators, which provide only single-factor
authentication.

• EnableFido2LoginHighAssurance – set this to true to allow authentication using
FIDO high assurance authenticators, which provide multi-factor authentication.

When using FIDO with web.oauth2, authentication using high and basic assurance is
controlled using the logon mechanisms feature; as the web.oauth2.ext standalone
authentication service does not use the MyID application server, this feature is not
available, and you must specify the logon mechanisms using the above options.

For more information about basic and high assurance FIDO authenticators, see the
Supported authenticators section in the FIDO Authenticator Integration Guide.

By default, EnableFido2LoginBasicAssurance is set to false, to prevent
authentication with FIDO basic assurance authenticators, and
EnableFido2LoginHighAssurance is set to true, to allow authentication with FIDO high
assurance authenticators.

For example:

"Clients":[
{},
{},
{

"ClientId":"myid.adfs",
"ClientName":"MyID ADFS",
"ClientSecrets":[

{
"Value":"kv31VP5z/oKS0QMMaIfZ2UrhmQOdgAPpXV/vaF1cymk="

 }
],

"RedirectUris":[
"https://myserver.example.com/AdfsAuth/home/AdfsAuth"

],
"Properties":

{
"Skin": "popover",
"EnableFido2LoginBasicAssurance": false,
"EnableFido2LoginHighAssurance": true

 }
 }
 }
]

4. Save the appsettings.Production.json file.

FIDO Authenticator Integration Guide.pdf

MyID Authentication Guide Page 18 of 86

5. Recycle the web service app pool:

a. On the MyID web server, in Internet Information Services (IIS) Manager, select
Application Pools.

b. Right-click themyid.web.oauth2.ext.pool application pool, then from the pop-up
menu click Recycle.

This ensures that the web service has picked up the changes to the configuration file.

3.5 Installing the AD FS Adapter OAuth
Before you install the AD FS Adapter OAuth, make sure you have the following web services
installed and configured:

• ADFS Auth web service – see section 3.3, Setting up the ADFS Auth web service.

• Standalone authentication service (web.oauth2.ext) – see section 3.4, Configuring the
standalone authentication service for AD FS.

You must install the AD FS Adapter OAuth on the AD FS server.

To install the adapter:

1. Copy the installation program onto the AD FS server.

The AD FS Adapter installation program is provided with the MyID installation media in
the following folder:
\Authentication\AD FS Adapter for MyID\

2. Run the .msi installation program.

3. Click Next to begin.

MyID Authentication Guide Page 19 of 86

4. Select the location for the AD FS Adapter.

By default, the AD FS Adapter is installed to the following location:
C:\Program Files\Intercede\

The installation program creates a the following folders in this location:

• ADFS_Adapter_OAuth – contains the AD FS Adapter configuration files.

• Themes – contains the themes for the AD FS Adapter;

Note: The themes folder is shared with the AD FS Adapter Mobile, if you have it
installed.

Click Next, and the Select Features screen appears.

5. Select the ADFS Adapter OAuth option.
For details of using the ADFS Adapter Mobile, see the Installing the AD FS Adapter
Mobile section in theMobile Authentication guide.

Mobile Authentication.pdf

MyID Authentication Guide Page 20 of 86

Click Next, and the ADFS OAuth Server screen appears.

6. Type the Server Name for your MyID standalone authentication server.
Note: Provide only the server name; do not include https:// or the path to the
web.oauth2.ext service. For example:
myserver.example.com

The installation program stores the server in the Fido2AdfsAdapter.json configuration
file for both the standalone authentication service and the ADFS Auth web service,
automatically completing the full URL; for example:
"myidAuth": {

 "server": "https://myserver.example.com/web.oauth2.ext",

 "redirect_server": "https://myserver.example.com/AdfsAuth"

}

MyID Authentication Guide Page 21 of 86

Click Next, and the ADFS Client Secret screen appears:

7. Provide the Client Secret.
See section 3.4.1,Generating a shared secret for details of generating a shared secret
and using it to secure the connection between the AD FS Adapter and the standalone
authentication service.

The installation program stores this in the Fido2AdfsAdapter.json configuration file as
an encrypted value:
"myidAuth": "client_secret"

MyID Authentication Guide Page 22 of 86

Click Next, and the MyID Theme screen appears.

8. In the Application box, type the display name that was provided for the Relying Party
Trust for which the AD FS Adapter OAuth will provide the authentication.

To find the display name, look in the following location:

Server Manager > Tools > AD FS Management > AD FS > Relying Party Trusts >
Display Name
For more information on themes, see section 3.6.3,Managing themes.

Click Next, then click Install.

9. When the installation program has completed, click Finish.

3.5.1 Uninstalling the AD FS Adapter OAuth
You can uninstall the AD FS Adapter OAuth from the Apps & features section of Windows
Settings; it is listed as the AD FS Adapter for MyID.
Note: Uninstalling the AD FS Adapter OAuth also uninstalls the AD FS Adapter Mobile, if you
have it installed.

MyID Authentication Guide Page 23 of 86

3.6 Managing the AD FS Adapter OAuth
After you have installed the AD FS Adapter OAuth, you can manage its settings using a
provided suite of PowerShell scripts and a JSON configuration file.

3.6.1 Configuration file
The AD FS Adapter OAuth configuration is stored in a JSON file called
Fido2AdfsAdapter.json in the ADFS_Adapter_OAuth folder; by default, this is:
C:\Program Files\Intercede\ADFS_Adapter_OAuth

If you have manually unregistered the AD FS Adapter OAuth and want to register it again,
you can run the following PowerShell script :

• RegisterADFSProvider.ps1 – this script reads the information in the configuration file
and uses it to register the AD FS Adapter OAuth.

You can also make changes to the configuration file and apply new settings.

To edit and apply new configuration settings:

1. In the ADFS_Adapter_OAuth folder, open the following file in a text editor:
Fido2AdfsAdapter.json

2. You can edit the following values:

• server – set this to the URL of the your standalone authentication server; for
example:
https://myserver.example.com/web.oauth2.ext

• client_secret – set this to the client secret you set up to secure the connection
between the AD FS Adapter OAuth and the standalone authentication server.

See section 3.4.1,Generating a shared secret for details of creating the secret.

You can include the secret in plain text in the configuration file by setting the client_
secret_encrypted option to false; however, you are strongly recommended to
encrypt the secret. See section 3.6.2, Encrypting the client secret for details.

• redirect_server – set this to the URL of the ADFS Auth web service; for example:
https://myserver.example.com/AdfsAuth

Do not change any of the other values in the configuration file.

3. Save the Fido2AdfsAdapter.json file.

4. Run the ReconfigureADFSProvider.ps1 PowerShell script to apply the changes.

This script unregisters the AD FS Adapter OAuth, then re-registers it using the updated
settings.

MyID Authentication Guide Page 24 of 86

3.6.2 Encrypting the client secret
You are strongly recommended to encrypt the client secret in the Fido2AdfsAdapter.json
file. This is done automatically by the installation program, but if you need to update the client
secret, you can encrypt it manually using the provided DPAPIEncrypt.ps1 PowerShell script.

To encrypt the client secret:

1. Log on to the AD FS server using the account configured as the logon account for the AD
FS service.

Note: It is important that you use this account to encrypt the secret, as no other accounts
can decrypt the secret to use it.

2. Open aWindows PowerShell command prompt, and navigate to the ADFS_Adapter_
OAuth folder.

By default, this is:
C:\Program Files\Intercede\ADFS_Adapter_OAuth

3. Run the following PowerShell script:
.\DPAPIEncrypt.ps1 <secret>

For example:
.\DPAPIEncrypt.ps1 82564d6e-c4a6-4f64-a6d4-cac43781c67c

The script outputs an encrypted copy of the secret; for example:
PS C:\Program Files\Intercede\ADFS_Adapter_OAuth> .\DPAPIEncrypt.ps1

82564d6e-c4a6-4f64-a6d4-cac43781c67c

AQAAANCMnd8BFdERjHoS [...] AAABGh5yPNcG7ubkY1aV93UrTxi7Daw==

(Encrypted output string truncated for documentation purposes.)

4. Copy the encrypted secret.

5. Edit the Fido2AdfsAdapter.json file, and set the following:

• client_secret – set this to the encrypted secret.

• client_secret_encrypted – set this to true.

For example:
"client_secret": "AQAAANCMnd8BFdERjHoS [...]

AAABGh5yPNcG7ubkY1aV93UrTxi7Daw==",

"client_secret_encrypted": "true",

6. Save the Fido2AdfsAdapter.json file.

7. Run the ReconfigureADFSProvider.ps1 PowerShell script to apply the changes.

This script unregisters the AD FS Adapter OAuth, then re-registers it using the updated
settings.

MyID Authentication Guide Page 25 of 86

3.6.3 Managing themes
After you have installed the AD FS Adapter, the Intercede branding files are stored in the
Themes folder in the installation folder.

Note: The themes folder is shared between the AD FS Adapter OAuth and the AD FS
Adapter Mobile, if you have both installed.

The MyIDAuthTheme2019 folder contains files used for Windows Server 2019 or Windows
Server 2022, and includes custom images, CSS, JavaScript and HTML. You are not
expected to edit these files. The MyIDAuthTheme folder contains files previously used for
systems running Windows Server 2016.

You can apply and remove these themes using the following PowerShell scripts:
• ApplyCustomTheme.ps1

This script applies the Intercede branding to the Relying Party Trust selected at
installation time.

• RemoveCustomTheme.ps1

This script removes the Intercede branding from the Relying Party Trust selected at
installation time.

3.6.4 Logging for the AD FS Adapter OAuth
Once you have installed and configured the AD FS Adapter OAuth as an authentication
method for a Relying Party Trust, when an authentication starts it raises a Windows
application event showing the configuration loaded when AD FS started the AD FS Adapter
OAuth plug-in. This shows the latest AD FS Adapter OAuth configuration provided by the
installer or reconfiguration script.

If the AD FS Adapter OAuth encounters a problem, it raises a Windows application error
event describing the problem.

To see these events:

1. Open the Windows Event Viewer application.

2. SelectWindows Logs > Application.
Events created in the Application event log by the AD FS Adapter OAuth have the source
set to:
MyIDFidoAdfsAdapter

Additionally, If the calling AD FS service detects a problem from the AD FS Adapter
OAuth, it raises an error event in the following location, describing the problem from the
AD FS point of view:

Applications and Service Logs > ADFS > Admin

MyID Authentication Guide Page 26 of 86

3.7 Troubleshooting
This section contains troubleshooting information and frequently asked questions related to
working with the MyID AD FS Adapter OAuth.

• I tried to log on, but I see "Incorrect user ID or password"
The user or email address is incorrect. Correct it and try again.

• I tried to log on, but I cannot see the FIDO option
Check the ADFS Manager has selected the Intercede FIDO ADFS adapter as the
Primary authentication method for Intranet.

• I tried to log on, but I see "Your security cannot be used with this site"
Try a different authenticator (security key). Some authenticators do not support user
verification; that is, they do not have a PIN or fingerprint sensor.

• I tried to log on, but I see "Error OA10010: Error authenticating FIDO in browser.
The operation either timed out or was not allowed."
This may be caused by the following situations:

• You exceeded the timeout (by default 90 seconds) before completing the
authentication.

If necessary, you can change the timeout by adding the Fido:Config:Timeout
option to the appsettings.Production.json file for the web.oauth2.ext web
service.

• You canceled the authentication operation.

• I tried to log on, but I see "400: An unexpected error occurred. Please contact
your administrator."
Check that the Fido:Config:Origin option in the appsettings.Production.json file
is set correctly; see section 3.4.2, Updating the web.oauth2.ext configuration file for
details.

• I tried to log on, but I see "Error OA10010: Error authenticating FIDO in browser.
The relying party ID is not a registrable domain suffix of, nor equal to the current
domain."
Check that the Fido:Config:ServerDomain option in the appsettings.json or
appsettings.Production.json file is set correctly; see the Configuring the server
settings section in the FIDO Authenticator Integration Guide for details.
Ensure the domain name has not changed since the credential was issued – FIDO
credentials can be used only for the domain on which they were registered.

If web.oauth2.ext (which is authenticating the user) is on a different server from
web.oauth2 (which registered the FIDO credential), ensure there is a load balancer or
reverse proxy in front of both of these servers, so that the client computer sees the same
domain in the URL for both of these machines.

FIDO Authenticator Integration Guide.pdf

MyID Authentication Guide Page 27 of 86

• I tried to log on, but I see "HTTP Error 500.30 - ANCM In-Process Start Failure"
Check that your appsettings.Production.json file is valid.

Note especially that copying code samples from a browser may include hard spaces,
which cause the JSON file to be invalid.

To assist in tracking down the problem, you can use the Windows Event Viewer. Check
theWindows Logs > Application section for errors; you may find an error from the
.NET Runtime source that contains information similar to:
Exception Info: System.FormatException: Could not parse the JSON file.

---> System.Text.Json.JsonReaderException: '"' is invalid after a

value. Expected either ',', '}', or ']'. LineNumber: 13 |

BytePositionInLine: 6.

which could be caused by a missing comma at the end of a line.

An error similar to:
Exception Info: System.FormatException: Could not parse the JSON file.

---> System.Text.Json.JsonReaderException: '0xC2' is an invalid start

of a property name. Expected a '"'. LineNumber: 7 | BytePositionInLine:

0.

is caused by a hard (non-breaking) space copied from a web browser, which is not
supported in JSON.

Note: Some JSON files used by MyID contain comment lines beginning with double
slashes // – these comments are not supported by the JSON format, so the JSON files
will fail validation if you attempt to use external JSON validation tools. However, these
comments are supported in the JSON implementation provided by asp.net.core, and so
are valid in the context of MyID.

You can also check that the Fido:Config:MDSAccessKeyClear option in the
appsettings.Production.json file is set correctly. If the MDSAccessKey contains an
encrypted value, MDSAccessKeyClearmust be false.

• I tried to log on, but I see "This page isn’t working <my domain> is currently
unable to handle this request. HTTP ERROR 500"
Check that the MyID:Database:ConnectionStringCore and
MyID:Database:ConnectionStringAuth options in the appsettings.json or
appsettings.Production.json file are set correctly.

See section 2.2, Configuring the standalone authentication service for details.

MyID Authentication Guide Page 28 of 86

• I tried to log on, but I see "Unknown error".

• Check that the myid.adfs client in the appsettings.Production.json file has a
valid value for ClientSecrets. This must be a Base64-encoded SHA-256 hash of
the client secret.

See section 3.4, Configuring the standalone authentication service for AD FS.

• Check that the Fido2AdfsAdapter.json file on the AD FS server has a valid value
for client_secret. This must be the shared secret that was used to generate the
Base64-encoded SHA-256 hash that you used on the web.oauth2.ext server; note
that you are strongly recommended to use an encrypted secret in this file.

See section 3.6,Managing the AD FS Adapter OAuth and section 3.6.2, Encrypting
the client secret for details.

• I tried to log on, but I see "Sorry, there was an error : invalid_scope"
Ensure that the appsettings.json file for the web.oauth2.ext service has the following:

• In the myid.adfs client section, AllowedScopes of openid and email.

• An IdentityResource named email.

• I tried to log on, but I see "Sorry, there was an error : invalid_request"
Ensure that the appsettings.Production.json file for the web.oauth2.ext service has
in the myid.adfs client section a valid value for the RedirectUris.

This must be in the format:
https://<auth service domain>/AdfsAuth/home/AdfsAuth

See section 3.4.2, Updating the web.oauth2.ext configuration file for details.

• I tried to log on, but I see "Invalid login request There are no login schemes
configured for this client."
Ensure that the appsettings.Production.json file for the web.oauth2.ext service has
in the myid.adfs client section, at least one of the following Properties set to true:
• EnableFido2LoginBasicAssurance

• EnableFido2LoginHighAssurance

See section 3.4.2, Updating the web.oauth2.ext configuration file for details.

• I tried to log on, but I see "Error code OA10018: You do not have any FIDO tokens
registered."
Check the Properties for the myid.adfs client section in the
appsettings.Production.json file for the web.oauth2.ext service. This error can occur
when EnableFido2LoginBasicAssurance is set to true,
EnableFido2LoginHighAssurance is set to false, and while there may be authenticators
registered with high assurance, there are no authenticators that were registered with
basic assurance.

MyID Authentication Guide Page 29 of 86

• I tried to log on, but the screen stops responding with a message saying "Please
wait a moment..."
If this occurs, check the following:

• On the ADFS Auth web server, check that the AllowedOrigins option in the
appsettings.Production.json file for the ADFS Auth web service is set correctly.
It must be set to the URL of the AD FS server.

For example:
"AllowedOrigins": ["https://adfs.example.com"]

See section 3.3.2, Configuring the ADFS Auth web service for details.

• On the AD FS server, check that the FidoAdfsAdapter.json file has a valid
redirect_server URL setting.

For example:
https://myserver.example.com/AdfsAuth

See section 3.6.1, Configuration file for details.

• I tried to log on, but I see "Server Error, 404 – File or directory not found"
On the AD FS server, check that the FidoAdfsAdapter.json file has a valid server URL
setting.

For example:
https://myserver.example.com/web.oauth2.ext

See section 3.6.1, Configuration file for details.

• When the browser redirects to web.oauth2.ext, it says there are no logon
mechanisms enabled
Ensure that the appsettings.Production.json file for the web.oauth2.ext service has,
in the myid.adfs client section, at least one of the following Properties set to true:
• EnableFido2LoginBasicAssurance

• EnableFido2LoginHighAssurance

See section 3.4.2, Updating the web.oauth2.ext configuration file for details.

• What are FIDO basic and high assurance?
FIDO authenticators may provide single-factor, two-factor, or multi-factor authentication.;
you can configure MyID to treat FIDO basic assurance authenticators and high
assurance authenticators with different levels of trust; for example, you can enable logon
to MyID for high assurance authenticators, but disable logon for basic assurance
authenticators.

For more information about basic and high assurance FIDO authenticators, see the
Supported authenticators section in the FIDO Authenticator Integration Guide.

FIDO Authenticator Integration Guide.pdf

MyID Authentication Guide Page 30 of 86

4 Authenticating using OpenID Connect
MyID provides a standards-based OAuth2 OpenID Connect authentication and authorization
service that allows you to:

• Carry out server-to-server authentication for the MyID Core API.

See the Server-to-server authentication section in theMyID Core API guide.

• Carry out end-user authentication for the MyID Core API.

See the End-user authentication section in theMyID Core API guide.

• Carry out end-user authentication for your own external systems.

See section 4.1, Configuring the web service for OpenID Connect and section 4.2,
Obtaining an identity token.

The authentication service uses the following standards:

• OAuth2

This is the authorization framework used by the MyID authentication service.

For more information, see The OAuth 2.0 Authorization Framework RFC:

tools.ietf.org/html/rfc6749

• OpenID Connect

OpenID Connect is an identity layer on top of the OAuth 2.0 protocol that allows external
systems to verify the identity of an end user based on the authentication performed by an
authorization server (in this case, the MyID authentication service), as well as to obtain
basic profile information about the end user.

For more information, see the OpenID Connect website:

openid.net/connect

• Proof Key for Code Exchange (PKCE)

PKCE is a system for securing requests for authorization codes and using them to
request access or identity tokens.

For more information, see the Proof Key for Code Exchange by OAuth Public Clients
RFC:

tools.ietf.org/html/rfc7636

• JSON Web Token (JWT)

JWT is a standard for the signed tokens that the MyID authentication service issues after
authentication. This is either an access token (for example, used by a client to call the
MyID Core API) or an identity token (for example, used by an external system to
authenticate the identity of an end user).

For more information, see the JSONWeb Token (JWT) RFC:

tools.ietf.org/html/rfc7519

MyID Core API.pdf
MyID Core API.pdf
https://tools.ietf.org/html/rfc6749
https://openid.net/connect/
https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7519

MyID Authentication Guide Page 31 of 86

• Fast IDentity Online (FIDO)

FIDO is a standard for interoperable authentication tokens.

For more information, see the FIDO Alliance website:

fidoalliance.org/fido2/fido2-web-authentication-webauthn
For information about integrating MyID with FIDO authenticators, see the FIDO
Authenticator Integration Guide.

https://fidoalliance.org/fido2/fido2-web-authentication-webauthn/
FIDO Authenticator Integration Guide.pdf
FIDO Authenticator Integration Guide.pdf

MyID Authentication Guide Page 32 of 86

4.1 Configuring the web service for OpenID Connect
You can use either the standard authentication service (web.oauth2) or the standalone
authentication service (web.oauth2.ext) to authenticate your users. The standalone
authentication service does not require access to the MyID application server, but connects
directly to the database; however, currently the standalone authentication service supports
only FIDO as an authentication method.

For more information on the standalone authentication service, see section 2, Setting up the
standalone authentication service.

Before you can use the MyID authentication service to verify the identity of an end user, you
must configure the web service with the details of your external system and with the security
protocols you want to use.

You can secure the request for an identity token in the following ways:

• Using a shared secret.

When configuring your authentication service, you generate a secret code, then store a
Base64-encoded SHA-256 hash of the code on the server; when you make the
authentication code request, you provide your secret code securely over https, and the
server compares it to the hash. The secret code is never stored on the server.

Important: You must keep the shared secret safe, as it can provide access to the
features of the MyID authentication service. Do not use the same shared secret for end-
user authentication and server-to-server API authentication.

• Using PKCE.

For each authentication code request, you generate a secret code (known as the code
verifier), then pass a Base64 URL-encoded SHA-256 hash of the code (known as the
code challenge) in the request. When you exchange the authentication code for an
identity token, you provide the code verifier, which the server compares to the code
challenge to verify that the same system requested the original authentication code.

For more information on PKCE, including details of requirements for the code verifier and
code challenge, see the Proof Key for Code Exchange by OAuth Public Clients RFC:

tools.ietf.org/html/rfc7636
You can use one or both of these methods. The examples in this document assume that you
are using a combination of both methods.

For stateful websites, where for example the server uses cookies to map stateful sessions
between the client and the web server, it is recommended to configure the authentication
service to require a client secret; you do not have to use PKCE, but you can use it in addition
to the client secret if you want.

For single-page apps, which run entirely on the client PC, you must secure the request for
authentication using PKCE; a shared secret is not appropriate.

Note: You must use TLS to ensure the security of the system. The MyID authentication
service is configured to use TLS by default; you must not use OAuth2 OpenID Connect-
based systems without TLS.

https://tools.ietf.org/html/rfc7636

MyID Authentication Guide Page 33 of 86

4.1.1 Creating a shared secret
If you are using a shared secret, you must generate an unguessable secret and create a hash
to store on the server.

You are recommended to use a GUID for the secret.

If you are using the standalone authentication web service (web.oauth2.ext) you can use the
provided GenClientSecret.ps1 PowerShell script to generate a GUID and create a SHA-
256 hash converted to Base64:

1. On the web server, open aWindows PowerShell command prompt.

2. Navigate to the authentication service folder.
C:\Program Files\Intercede\MyID\web.oauth2.ext

3. Run the script:
.\GenClientSecret.ps1

The script generates a GUID to use as the shared secret, creates a SHA-256 hash from
the GUID, then converts the hash to Base64; for example:
PS C:\Program Files\Intercede\MyID\web.oauth2> .\GenClientSecret.ps1

client secret: 82564d6e-c4a6-4f64-a6d4-cac43781c67c

SHA256+base64: kv31VP5z/oKS0QMMaIfZ2UrhmQOdgAPpXV/vaF1cymk=

Important: Do not use this example secret in your own system.

4. Take a note of the following values:

• client secret – you need this value for the client_secret parameter when
posting to the token URL.

See section 4.2.3, Requesting an identity token.

• SHA256+base64 – you need this value for the ClientSecrets parameter in the web
service configuration file. The server does not store the secret, only the Base64-
encoded hash.

See section 4.1.2, Editing the configuration file.

The script uses the following code to generate the GUID and Base64-encoded hash:

Add-Type -AssemblyName System.Security
if ($args.count -ne 0)
{

write-host "Usage: GenClientSecret"
exit

}
$clientSecret = [guid]::NewGuid()

write-host "client secret: " $ClientSecret

$hasher = [System.Security.Cryptography.HashAlgorithm]::Create('sha256')
$hashBytes = $hasher.ComputeHash([System.Text.Encoding]::UTF8.GetBytes($ClientSecret))

$Sha256Base64 = [Convert]::ToBase64String($hashBytes)
write-host "SHA256+base64: " $Sha256Base64

MyID Authentication Guide Page 34 of 86

4.1.2 Editing the configuration file
1. In a text editor, open the appsettings.Production.json file for the web service.

By default, this is:
C:\Program Files\Intercede\MyID\web.oauth2\appsettings.Production.json

If you are using a standalone web service, by default, this is:
C:\Program

Files\Intercede\MyID\web.oauth2.ext\appsettings.Production.json

This file is the override configuration file for the appsettings.json file for the web
service.

MyID Authentication Guide Page 35 of 86

2. Edit the file to include the following:

{
"Clients": [

{
"ClientId": "<my client ID>",
"ClientName": "<my client name",
"AccessTokenLifetime": <access lifetime>,
"IdentityTokenLifetime": <identity lifetime>,
"AllowedGrantTypes": [

"authorization_code"
],

"RequireClientSecret": true,
"RequirePkce": true,
"AllowAccessTokensViaBrowser": true,
"RequireConsent": true,
"ClientSecrets": [

{
"Value":"<secret>"

 }
],

"AllowedScopes": [
"openid"

],
"AlwaysIncludeUserClaimsInIdToken": true,
"RedirectUris": [

"<callback URL>"
],

"AllowedCorsOrigins": [
"<origin>"

],
"Properties": {

"EnableSelfService": true,
"Skin": "popover"

 }
 }
]
}

where:

• <my client ID> – the client ID you decided on; for example:
myid.openid

This represents your back-end system that intends to make calls to the MyID
authentication service.

• <my client name> – an easily readable name for your client system; for example:
My OpenID Connect System

• <access lifetime> – the time (in seconds) that the access token is valid. The
default is 3600 – 1 hour.

• <identity lifetime> – the time (in seconds) that the identity token is valid. The
default is 300 – 5 minutes.

• <secret> – if you are using a shared secret, set this to the Base64-encoded SHA-
256 hash of the secret you created; for example:

MyID Authentication Guide Page 36 of 86

kv31VP5z/oKS0QMMaIfZ2UrhmQOdgAPpXV/vaF1cymk=

See section 4.1.1, Creating a shared secret.

• <callback URL> – the URL of the web page on your system to which the
authorization code will be returned.

• <origin> – used for Cross-Origin Resource Sharing (CORS). If the web page that
calls the authentication service is on a different origin from the authentication service,
you must add the origin to this list.

Note:Make sure you use an origin, and not an URL, when configuring CORS. For
example: https://myserver/ is an URL, while https://myserver is an origin.

MyID Authentication Guide Page 37 of 86

You can set the following options:

• RequireClientSecret – set this to true if you are using a shared secret to secure
the request.

• RequirePkce – set this to true if you are using PKCE to secure the request.

Note: You must use a shared secret, PKCE, or both a shared secret and PKCE.

• RequireConsent – set this to true to allow the end-user to approve the external
system's access to their identity information stored on your authentication service.

• AllowedScopes – set this to one of the values in the IdentityResources section of
the appsettings.json file for the authentication service:

• openid – returns the sub claim in the identity token; this is the subject ID of the
end user, as stored in the UserAccounts.ObjectID field in the MyID database.

• email – returns the email claim in the identity token; this is the email address of
the user, as stored in the People.Email field in the MyID database.

Note: The email claim is currently available only for FIDO authentication.

• profile – returns the name claim in the identity token; this is the MyID logon
name of the user, as stored in the UserAccounts.LogonName field in the MyID
database.

• AlwaysIncludeUserClaimsInIdToken – set this to true to allow claims other than
sub to be returned in the identity token. If you do not set this to true, setting
AllowedScopes to include email and profile does not result in additional claims in
the identity token.

• Properties – you can set the following:

• Skin – currently only popover is available as a skin option for the authentication
GUI. The authentication web page shows a background image with a popover
representing the authentication UI; this is suitable for large windows. If you are
displaying the authentication page in a small popup window, you can omit this
option.

• EnableFido2LoginBasicAssurance – set this to true to allow authentication
using FIDO basic assurance authenticators, which provide only single-factor
authentication.

• EnableFido2LoginHighAssurance – set this to true to allow authentication
using FIDO high assurance authenticators, which provide multi-factor
authentication.

When using FIDO with web.oauth2, authentication using high and basic
assurance is controlled using the logon mechanisms feature; as the
web.oauth2.ext standalone authentication service does not use the MyID
application server, this feature is not available, and you must specify the logon
mechanisms using the above options.

For more information about basic and high assurance FIDO authenticators, see
the Supported authenticators section in the FIDO Authenticator Integration
Guide.

FIDO Authenticator Integration Guide.pdf
FIDO Authenticator Integration Guide.pdf

MyID Authentication Guide Page 38 of 86

• EnableAuthCodeLogin – set this to true to allow authentication using single-
use authentication codes (assuming MyID is configured to use the
Authentication Code logon mechanism), or false to prevent this client from
using single-use authentication codes, even if MyID is configured for
authentication codes for the MyID Operator Client.

For more information on authentication codes, see the Configuring
authentication codes for the MyID authentication server section in the
Administration Guide.

• EnablePassphraseLogin – set this to true to allow authentication using security
phrases (assuming MyID is configured to use the Password Logon logon
mechanism) or false to prevent this client from using security phrases, even if
MyID is configured for security phrase logon for the MyID Operator Client.

The default is true, which allows security phrase logon if MyID is configured to
use Password Logon in the Logon Mechanisms tab of the Security Settings
workflow.

• EnableCardLogin – set this to true to allow authentication using a smart card
(assuming MyID is configured to use the Smart Card Logon logon mechanism)
or false to prevent this client from using smart cards to authenticate, even if
MyID is configured for smart card logon for the MyID Operator Client.

The default is true, which allows smart card logon if MyID is configured to use
Smart Card Logon in the Logon Mechanisms tab of the Security Settings
workflow.

• EnableWindowsLogin – set this to true to allow authentication using a
Integrated Windows Logon (assuming MyID is configured to use the Integrated
Windows Logon logon mechanism) or false to prevent this client from using
Windows credentials to authenticate, even if MyID is configured for Integrated
Windows Logon for the MyID Operator Client.

The default is true, which allows Integrated Windows Logon if MyID is
configured to use Integrated Windows Logon in the Logon Mechanisms tab
of the Security Settings workflow.
See the Signing in using Windows authentication section in theMyID Operator
Client guide for more information about configuring MyID for Integrated
Windows Logon.

• EnableHeadlessCardLogin – set this to true to allow authentication using a key
pair; for example, for certificate renewal for mobile identities. MyID must also be
configured to use the Smart Card Logon logon mechanism.
The default is false. This setting is currently used only for the
myid.rest.mobile client.

• EnableHeadlessPassphraseLogin – set this to true to allow authentication
using a key pair; for example, for certificate renewal for mobile identities. MyID
must also be configured to use the Password Logon logon mechanism.
The default is false. This setting is currently used only for the
myid.rest.mobile client.

Administration Guide.pdf
MyID Operator Client.pdf
MyID Operator Client.pdf

MyID Authentication Guide Page 39 of 86

• EnableSelfService – set this to true to allow people to launch the MyID Self-
Service App from the MyID Authentication screen using theManage My
Credentials link; this allows people to manage their credentials without first
signing in to MyID; for example, to change their security phrases or reset their
device PIN. Set this property to false to prevent theManage My Credentials link
from being displayed.

Note: The Allow Self-Service at Logon configuration option (on the Logon tab
of the Security Settings workflow) must also be set for this option to appear.

• EnableLoginMechanism_<id> – where <id> is the ID of the external identity
provider logon mechanism; for example, EnableLogonMechanism_121. Set this
to true to allow authentication using the specified logon mechanism (assuming
MyID is configured to use the appropriate logon mechanism in the Logon
Mechanisms tab of the Security Settings workflow).
See section 6, Setting up an external identity provider for more information.

MyID Authentication Guide Page 40 of 86

Important: If you have clients in the appsettings.json file and the
appsettings.Production.json file, make sure the production file does not overwrite
the entries in the base file. In these settings files, entries in arrays are determined by their
index; therefore if you have four existing entries in the appsettings.json file, you must
include four blank array entries {}, in the appsettings.Production.json file before
you include your new client details. Alternatively, you can include the entire Clients
array in the appsettings.Production.json file.

Note: By default, the appsettings.Production.json file contains the myid.adfs client
section in the appropriate place; see section 3.4, Configuring the standalone
authentication service for AD FS for details.

For example:

{
"Clients": [

{},
{},
{},
{},
{

"ClientId": "myid.openid",
"ClientName": "My OpenID Connect System",
"AccessTokenLifetime": 3600,
"IdentityTokenLifetime": 300,
"AllowedGrantTypes": [

"authorization_code"
],

"RequireClientSecret": true,
"RequirePkce": true,
"AllowAccessTokensViaBrowser": true,
"RequireConsent": true,
"ClientSecrets": [

{
"Value":

"kv31VP5z/oKS0QMMaIfZ2UrhmQOdgAPpXV/vaF1cymk="
 }
],

"AllowedScopes": [
"openid"

],
"AlwaysIncludeUserClaimsInIdToken": true,
"RedirectUris": [

"https://myserver/mysystem/callback.asp"
],

"AllowedCorsOrigins": [
"http://myserver"

],
"Properties": {

"EnableSelfService": true,
"Skin": "popover"

 }
 }
]
}

If you already have an appsettings.Production.json file, back up the existing file,
then incorporate the new client section above into the file.

MyID Authentication Guide Page 41 of 86

3. Save the configuration file.

4. Recycle the web service app pool:

a. On the MyID web server, in Internet Information Services (IIS) Manager, select
Application Pools.

b. Right-click themyid.web.oauth2.pool application pool, then from the pop-up menu
click Recycle.

c. If you are using the standalone web service, right-click the
myid.web.oauth2.ext.pool application pool, then from the pop-up menu click
Recycle.

This ensures that the web service has picked up the changes to the configuration file.

5. Check that the authentication service is still operational by logging on to the MyID
Operator Client.

Application setting JSON files are sensitive to such issues as comma placement; if the
format of the file is not correct, the web service cannot load the file and will not operate,
which may result in an error similar to:
HTTP Error 500.30 - ANCM In-Process Start Failure

See section 4.3, Troubleshooting for information on resolving problems that cause HTTP
Error 500.30.

As an alternative to logging on to the MyID Operator Client (for example, if you are using
the standalone authentication service), you can check the following URL:
https://<myserver>/web.oauth2/.well-known/openid-configuration

For the standalone authentication service, this is:
https://<myserver>/web.oauth2.ext/.well-known/openid-configuration

where <myserver> is the address of the MyID authentication service. This should return
a block of JSON describing the endpoints and configuration of your authentication
service.

4.1.3 Configuring authentication to skip the MyID Authentication screen
You can configure authentication for web.oauth2 or the MyID Operator Client to skip the
MyID Authentication screen; if there is a single logon mechanism enabled (due to other logon
mechanisms being disabled in MyID security settings or in the web.oauth2 appsettings for a
given oauth2 client) the user is not presented with the MyID Authentication screen when they
authenticate. The single available logon mechanism that is enabled is automatically used.
However, if the EnableSelfService option is set to true the MyID Authentication screen
also displays aManage My Credentials link; this means that MyID cannot skip the MyID
Authentication screen.

MyID Authentication Guide Page 42 of 86

4.2 Obtaining an identity token
Obtaining an identity token is a two-stage process. First, you must request an authorization
code; once you have this code, you can exchange it for an identity token.

4.2.1 Generating a PKCE code verifier and code challenge
If you are using PKCE, you must generate a code verifier and code challenge. each time you
request an authorization code and identity token.

The PKCE code verifier and code challenge are used to request the authorization code.

1. Generate a cryptographically-random key.

This is the code verifier.

The code verifier must be a high-entropy cryptographic random string using the following
characters:
[A-Z] / [a-z] / [0-9] / "-" / "." / "_" / "~"

The minimum length is 43 characters, and the maximum length is 128 characters.

2. Generate a SHA-256 hash of this key, then encode it using Base64 URL encoding.

This is the code challenge.

Important: Base64 URL encoding is slightly different to standard Base64 encoding.
See the Protocol section of the PKCE standard for details of requirements for the code
verifier and code challenge:

tools.ietf.org/html/rfc7636#section-4
Example PowerShell script for generating a code challenge from a given code verifier:

$code_verifier ='TiGVEDHIRkdTpif4zLw8v6tcdG2VJXvP4r0fuLhsXIj'

Hash the code verifier using SHA-256
$hasher = [System.Security.Cryptography.HashAlgorithm]::Create("sha256")
$hashOfSecret = $hasher.ComputeHash([System.Text.Encoding]::UTF8.GetBytes($code_verifier))

Convert to Base64 URL encoded (slightly different to normal Base64)
$clientSecret = [System.Convert]::ToBase64String($hashOfSecret)
$clientSecret = $clientSecret.Split('=')[0]
$clientSecret = $clientSecret.Replace('+', '–')
$clientSecret = $clientSecret.Replace('/', '_')

Output the results
Write-Output ("`r`nThe code verifier is: `r`n`r`n$code_verifier")
Write-Output ("`r`nAnd code challenge is:`r`n`r`n$clientSecret")

Wait for a keypress
Write-Host "`r`nPress any key to continue...`r`n" -ForegroundColor Yellow
[void][System.Console]::ReadKey($true)

https://tools.ietf.org/html/rfc7636#section-4

MyID Authentication Guide Page 43 of 86

4.2.2 Requesting an authorization code

MyID Authentication Guide Page 44 of 86

You must request an authorization code from the authentication service before you can
obtain an identity token.

MyID Authentication Guide Page 45 of 86

1. From your website, post the following information to the MyID authorization URL:
https://<server>/web.oauth2/connect/authorize

For the standalone authentication service, this is:
https://<server>/web.oauth2.ext/connect/authorize

• client_id – the ID of your system; for example:
myid.openid

• scope – set this to one of the scopes listed in the AllowedScopes parameter of your
appsettings.Production.json file; for example:
openid

• redirect_uri – set this to the URL of the page on your website to which the
authorization code will be returned. This must be the same as the URL you specified
in the appsettings.Production.json file.

• response_type – set this to code

• code_challenge – if you are using PKCE, set this to the PKCE code challenge you
generated. This is the Base64 URL-encoded SHA-256 hash of the random code
verifier you created.

• code_challenge_method – if you are using PKCE, set this to S256

• state – this value is returned in the redirect, allowing you to persist data between the
authorization request and the response; you can use this as a session key.

MyID Authentication Guide Page 46 of 86

• acr_values – an optional parameter that allows you to pass a space-separated list
of values. Currently, this supports:

• logonmechanism:<logon_mechanism> – allows you to select which logon
mechanism to use. Use the following values:

Value
Logon
Mechanism

appsettings

passphrase Password
Logon

EnablePassphraseLogin

smartcardmc

s

Smart Card
Logon

EnableCardLogin

fido FIDO Basic
Assurance

FIDO High
Assurance

EnableFido2LoginBasicAssura

nce

EnableFido2LoginHighAssuran

ce

authcode Authenticatio
n Code

EnableAuthCodeLogin

windows Windows
Authenticatio
n

EnableWindowsLogin

<id> External
identity
provider

EnableLoginMechanism_<id>

The relevant authentication mechanism must be enabled in the Logon
Mechanisms tab of the Security Settings workflow in MyID, and must not be
overridden with a false value in the Properties section for the selected client in
the appsettings file.

For example:
• acr_values=logonmechanism:authcode

Specifies the Authentication Code logon mechanism.
• acr_values=logonmechanism:101

Specifies the Microsoft Entra external identity provider (which has the external
identity provider logon mechanism ID of 101).

If you provide this setting in an URL, you must URL-encode the : in the parameter:
use %3a as a substitute; for example:
acr_values=logonmechanism%3aauthcode

acr_values=logonmechanism%3a101

MyID Authentication Guide Page 47 of 86

• login_hint – an optional parameter that allows you to provide the logon user name
when using the Authentication Code logon mechanism. The Username or email
address field on the Authentication Code Login dialog is pre-populated with the
value you provide here.

You must URL-encode the logon user name; use %20 as a substitute for a space. For
example:
login_hint=susan%20smith

When you post this request, the MyID authentication service prompts you for your user
credentials. The available methods of authentication depend on how you have
configured your system; the same methods are available for authentication as are
available in the MyID Operator Client. (Although note that you can disable logon
mechanisms for each client listed in the web.oauth2 application settings file; see section
4.1.2, Editing the configuration file.)

If you are using the standalone authentication service, only FIDO is currently supported
as a logon method.

If the EnableSelfService option is set to true (see section 4.1.2, Editing the
configuration file) the MyID Authentication screen also displays aManage My
Credentials link that allows you to launch the MyID Self-Service App to manage your
credentials (for example, changing your security phrases or resetting your device PIN)
without completing your authentication. You must have the MyID Self-Service App
installed, and the MyID Client Service app installed and running, to use this feature.

Note: If there is only one authentication method available, this stage is skipped. This also
means that you are not given an opportunity to use theManage My Credentials link.

MyID Authentication Guide Page 48 of 86

2. Complete the authentication using your method of choice; for example, security
questions or FIDO.

Note: You may need to ensure that the MyID Client Service is running on your PC; for
example, smart cards and VSCs require the MyID Client Service.

If you configured your system to require consent using the RequireConsent parameter,
the end user must allow your external system to access their information on the MyID
authentication service:

Note: The name displayed on this screen is the ClientName parameter you set up in the
appsettings.Production.json configuration file.

3. Capture the code parameter that is returned to the page you specified in the redirect_
uri parameter.

This is your authorization code, which can be used once to request an identity token. If
you need to request another identity token, you must first request another authorization
code and go through the user authentication procedure again.

MyID Authentication Guide Page 49 of 86

4.2.3 Requesting an identity token
Once you have an authorization code, you can exchange it for an identity token.

1. Post the following information to the MyID token URL:
https://<server>/web.oauth2/connect/token

For the standalone authentication service, this is:
https://<server>/web.oauth2.ext/connect/token

• grant_type – set this to authorization_code

• client_id – the ID of your system; for example:
myid.openid

This must be the same as the client ID you used to request the authorization code.

• code_verifier – if you are using PKCE, set this to the code verifier you created.

Note: Do not use the Base64 URL-encoded SHA-256 hash (the code challenge) –
use the original plaintext value. The server compares this value to the encoded hash
you provided when you requested the authorization code.

• client_secret – if you are using a shared secret, set this to the plaintext of the
client secret you configured for the authentication service.

Note: Alternatively, you can combine the client_id and the client_secret and
post them as a Basic authentication header; for an example of this, see the
Requesting an access token section in theMyID Core API document.

• code – set this to the authorization code you obtained from the server.

• redirect_uri – set this to the URL of the page on your website you specified when
you requested the authorization code.

2. Capture the id_token that is returned.

The identity token is in the standard JWT format. You can inspect the token manually at
jwt.io or use a variety of existing libraries or middleware to extract the identity information
from the token.

For example, the openid scope returns the sub claim in the payload of the identity token:
"sub": "5d3eac85-fa64-4891-b98a-52412b0c585d"

This is the subject ID of the end user, as stored in the UserAccounts.ObjectID field in
the MyID database.

See the information about the AllowedScopes parameter in section 4.1.2, Editing the
configuration file for details about other claims that you can request.

Note: You must set the AlwaysIncludeUserClaimsInIdToken parameter to true to
allow claims other than sub to be returned in the identity token.

MyID Core API.pdf
https://jwt.io/

MyID Authentication Guide Page 50 of 86

4.3 Troubleshooting
This section contains troubleshooting information for OpenID authentication.

If you are experiencing problems, you are recommended to enable logging for the
web.oauth2 or web.oauth2.ext web service; see theMyID REST and authentication web
services section in the Configuring Logging guide for details.
To confirm that the authentication service is running, you can check the following URL:
https://<myserver>/web.oauth2/.well-known/openid-configuration

For the standalone authentication service, this is:
https://<myserver>/web.oauth2.ext/.well-known/openid-configuration

where <myserver> is the address of the MyID authentication service. This should return a
block of JSON describing the endpoints and configuration of your authentication service.

• HTTP Error 500.30 when accessing the authentication service
If you see an error similar to:
HTTP Error 500.30 - ANCM In-Process Start Failure

Check that your appsettings.Production.json file is valid.

Note especially that copying code samples from a browser may include hard spaces,
which cause the JSON file to be invalid.

To assist in tracking down the problem, you can use the Windows Event Viewer. Check
theWindows Logs > Application section for errors; you may find an error from the
.NET Runtime source that contains information similar to:
Exception Info: System.FormatException: Could not parse the JSON file.

---> System.Text.Json.JsonReaderException: '"' is invalid after a

value. Expected either ',', '}', or ']'. LineNumber: 13 |

BytePositionInLine: 6.

which could be caused by a missing comma at the end of a line.

An error similar to:
Exception Info: System.FormatException: Could not parse the JSON file.

---> System.Text.Json.JsonReaderException: '0xC2' is an invalid start

of a property name. Expected a '"'. LineNumber: 7 | BytePositionInLine:

0.

is caused by a hard (non-breaking) space copied from a web browser, which is not
supported in JSON.

Note: Some JSON files used by MyID contain comment lines beginning with double
slashes // – these comments are not supported by the JSON format, so the JSON files
will fail validation if you attempt to use external JSON validation tools. However, these
comments are supported in the JSON implementation provided by asp.net.core, and so
are valid in the context of MyID.

Configuring Logging.pdf

MyID Authentication Guide Page 51 of 86

• invalid_grant error when requesting an identity token
This is a general error that may have several causes. Check the log for the web.oauth2 or
web.oauth2.ext service for more information.

For example, you may see errors in the log similar to:
• code_verifier is too short or too long

In this case, check that your PKCE code verifier is between 43 and 128 characters.
Note that this means a GUID is not long enough.

• Client is trying to use a code from a different client

In this case, check that the client_id you passed when requesting the identity
token is the same as the client_id you passed when requesting the authorization
code.

• Invalid redirect_uri

In this case, the redirect URL that you provided in the request for an identity token
does not match the URL that you provided when requesting the authorization code;
you must use the same URL in both requests.

• Invalid authorization code

In this case, you have either provided an incorrect authorization code, or the code
has expired. Authorization codes are single-use; even if the attempt to obtain an
identity token fails for another reason, you cannot re-use an authorization code. You
must request another code and start the process again.

• invalid_scope error when requesting an authorization code
The scope you requested is not permitted for the client ID you are using. Check that you
have set up the AllowedScopes parameter correctly.

Check the log for the web.oauth2 or web.oauth2.ext service for more information.

• unauthorized_client error when requesting an authorization code
Check that the client ID you are passing is correct; this must be a valid ClientId from the
appsettings.Production.json file.

Check the log for the web.oauth2 or web.oauth2.ext service for more information.

• unsupported_response_type error when requesting an authorization code
Check that the response type you are requesting is code.

Check the log for the web.oauth2 or web.oauth2.ext service for more information.

MyID Authentication Guide Page 52 of 86

• Cannot access the MyID Operator Client
If your new system is working correctly, but when you attempt to sign in to the
MyID Operator Client you see an error similar to:
Sorry, there was an error : unauthorized_client

You may have overwritten the standard clients in the appsettings.json file with your
changes to the appsettings.Production.json file.

The log for the web.oauth2 or web.oauth2.ext service will contain an error similar to:
Unknown client or not enabled: myid.operatorclient

In JSON settings files, entries in arrays are determined by their index; therefore if you
have four existing entries in the appsettings.json file, you must include four blank
array entries {}, in the appsettings.Production.json file before you include your new
client details.

MyID Authentication Guide Page 53 of 86

5 Authenticating for embedded Operator Client screens
You can embed MyID Operator Client screens in your own intranet pages. Each screen has a
dedicated URL that you can use to specify the page; for example, the Add Person screen, or
a list of search results, or the View Person screen for a particular person.

See the Using the browser location bar section in theMyID Operator Client guide for details
of Operator Client URLs.

You can embed the screen in an iframe, authenticate to MyID, then carry out any required
actions.

However, if you intend to view more than one screen, you may not want to have to
authenticate to the MyID Operator Client for each screen. Instead, you can configure the
MyID authentication server to allow you to request an authentication token, which you can
then post to the iframe containing the MyID Operator Client screen.

The process is as follows:

1. Configure the authentication server.

See section 5.1, Configuring web.oauth2 for user-based authentication.

2. Authenticate to MyID and obtain an access token.

See section 5.2,Obtaining an access token.

3. Post the access token to the embedded Operator Client screen.

See section 5.3, Posting the access token.

5.1 Configuring web.oauth2 for user-based authentication
TheMyID Core API guide contains details of configuring the web.oauth2 authentication
server for user-based authentication using PKCE. Follow the instructions in the Configuring
the authentication service for PKCE section, setting the following:

• ClientId – set this to an ID for your intranet; for example:
myid.intranet

• RedirectUris – add the location of your intranet page to which the authorization code
will be returned.

For example:
"RedirectUris": [

"https://react.domain31.local/mysystem/callback.asp"

]

MyID Operator Client.pdf
MyID Core API.pdf

MyID Authentication Guide Page 54 of 86

5.2 Obtaining an access token
Follow the instructions inObtaining an end-user based access token using PKCE section of
theMyID Core API guide. You must carry out the following:

1. Generate a PKCE code verifier and code challenge.

See theGenerating a PKCE code verifier and code challenge section.

2. Obtain an authorization code from the authentication server, passing the PKCE code
challenge.

See the Requesting an authorization code section.

When you post to the MyID authorization URL, set the client_id to the ID of your
intranet system; for example:
myid.intranet

You set up this ID when you configured the authentication server; see section 5.1,
Configuring web.oauth2 for user-based authentication.

3. Use the authorization code to request an access token, passing the PKCE code verifier.

See the Requesting an access token section.

Once you have carried out this procedure, you will have a block of JSON containing an
access_token that you can then use to authenticate to your embedded Operator Client
screen.

MyID Core API.pdf

MyID Authentication Guide Page 55 of 86

5.2.1 Example requests
On your server, create the following pages.

The first page is default.asp – this page requests the authorization code.

<html>
<head>

<title>Request authorization</title>
</head>
<body>

<form method=post enctype="application/x-www-form-
urlencoded" action="https://react.domain31.local/web.oauth2/connect/authorize">

<p>Client id: <input type="text" name="client_id" value="myid.intranet"></p>
<p>Scope: <input type="text" name="scope" value="myid.rest.basic"></p>
<p>Redirect: <input type="text" name="redirect_

uri" value="https://react.domain31.local/mysystem/callback.asp"></p>
<input type="hidden" name="response_type" value="code">
<input type="hidden" name="code_challenge" value="lzKaVv4bWu06z_

m0yFynJj6zttnU5gYpXah8tLYKzGg">
<input type="hidden" name="code_challenge_method" value="S256">
<input type="submit">

</form>
</body>
</html>

This page contains a simple form that calls the authorization endpoint.

• The client_id is set to myid.intranet – this must match the entry you added to the
appsettings.Production.json file.

• The redirect_uri is set to
https://react.domain31.local/mysystem/callback.asp – this must also be
included in the appsettings.Production.json file.

This is the page to which the server will return the authorization code.

• The code_challenge is set to lzKaVv4bWu06z_m0yFynJj6zttnU5gYpXah8tLYKzGg,
which is the Base64 URL encoded SHA256 hash of the code verifier. The code challenge
and the code verifier make up a pair of values that are used to ensure that the same
person makes the call to the authorization endpoint and the token endpoint.

MyID Authentication Guide Page 56 of 86

The second page is callback.asp – this page is passed the authorization code by the
authentication server, and then allows you to request the access token.

<html>
<head>

<title>Request access token</title>
</head>
<body>

<form method=post enctype="application/x-www-form-
urlencoded" action="https://react.domain31.local/web.oauth2/connect/token">

<input type="hidden" name="grant_type" value="authorization_code">
<p>Client id: <input type="text" name="client_id" value="myid.intranet"></p>
<input type="hidden" name="code_

verifier" value="TiGVEDHIRkdTpif4zLw8v6tcdG2VJXvP4r0fuLhsXIj">
<p>Code: <input type="text" name ="code" value ="<%

response.write(request.querystring("code"))
%>"</p>

<p>Redirect: <input type="text" name="redirect_
uri" value="https://react.domain31.local/mysystem/callback.asp"></p>

<input type="submit">
</form>

</body>
</html>

This page is passed the authorization code, then includes this in a simple form to request the
access token.

• The client_id is set to myid.intranet – this must match the entry you added to the
appsettings.Production.json file.

• The code_verifier is set to TiGVEDHIRkdTpif4zLw8v6tcdG2VJXvP4r0fuLhsXIj – this
is the companion piece to the PKCE code challenge.

• The code is set to the authorization code, which is passed to this page in the code part of
the query string.

• The redirect_uri is set to
https://react.domain31.local/mysystem/callback.asp – this must also be
included in the appsettings.Production.json file.

MyID Authentication Guide Page 57 of 86

5.3 Posting the access token
Once you have an access token, you can post the token to the embedded Operator Client
screen, and you are automatically authenticated to that screen until the token expires. If you
pass an expired or invalid token, you can authenticate using the Sign In option.
Sample code for posting the token:

<html>
<head>
<script>
function applyToken() {

document.getElementById("OCFrame").src = document
 .getElementById("link")
 .value.replace("#/", "#/embedded/");

document.getElementById("OCFrame").contentWindow.postMessage({
 token: document.getElementById("token").value,
 });
 }

</script>
<style>

 #OCFrame {
 border: 3px solid blue;
 width: 80%;
 height: 90%;
 }
 #link,
 #token {
 margin: 2px;
 width: 900px;
 }

</style>
</head>
<body>

 This is Operator Client embedded in an iframe:

<iframe
id="OCFrame"
src=https://react.domain31.local/myid/operatorclient/#

 ></iframe>

Token: <input type="text" id="token" />

URL:
<input
type="text"
id="link"
value=""
/>

<input type="button" value="Apply" onclick="applyToken()" />

</body>
</html>

When you click Apply, this simple example sets the location of the iframe to the URL you
provided in the form. The code automatically adds /embedded to the URL after the # to hide
the category and search panels.

MyID Authentication Guide Page 58 of 86

It then takes the token you provided, and uses postMessage to pass the token to the
embedded Operator Client screen, automatically authenticating you, assuming the access
token is valid.

Important: The postMessagemethod allows cross-origin communication between window
objects (for example, between a window and its embedded iframe) and you are encouraged
to review the security guidelines for this scenario; for example:

developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
You must make sure that this page is on the same server as MyID.

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

MyID Authentication Guide Page 59 of 86

6 Setting up an external identity provider
You can configure MyID to set up an external OpenID Connect identity provider (for example,
Microsoft Entra or Google) to provide authentication to the MyID Operator Client or any other
system that uses the MyID web.oauth2 authentication service.

You can then select the external identity provider from the MyID Authentication screen.

Note: You cannot use external identity providers for MyID Desktop or the Self-Service App;
you can use them only for the MyID Operator Client or other systems that you have
configured to use the MyID web.oauth2 authentication service.

MyID Authentication Guide Page 60 of 86

You can configure MyID to add new users from your external identity provider, to accept
users only if they already exist in MyID, or to update existing users with details from the
external identity provider. You can map the information available as claims from the external
identity providers to MyID user attributes.

You can:

• Configure Microsoft Entra as an external identity provider.

See section 6.1, Configuring Microsoft Entra.

• Configure any OpenID Connect system as an external identity provider.

See section 6.2, Configuring OpenID Connect.

• Configure other types of external identity provider.

See section 6.3, Configuring other types of identity provider.

• Map attributes from the external identity provider to MyID attributes.

See section 6.4,Mapping attributes.

MyID Authentication Guide Page 61 of 86

6.1 Configuring Microsoft Entra
You can use Microsoft Entra as an external identity provider for MyID.

6.1.1 Configuring Microsoft Entra as an external identity provider
When you configure Microsoft Entra, you can register a new application to use as the external
identity provider in MyID.

You are recommended to create the application as a single tenant system, where only
members of your own organization have access to MyID; if you create a multitenant system,
anyone with an organizational Microsoft account can access your system.

You must configure the following in Microsoft Entra:

• Redirect URIs
Add the redirect URI for your web.oauth2 server. This is in the format:
https://<server>/web.oauth2/signin-microsoft

Where <server> is the address of your MyID web server.

For example:
https://myid.mydomain.com/web.oauth2/signin-microsoft

• Client secrets
Create a client secret in Microsoft Entra. You must take a note of this client secret when
you create it, as for security reasons it is not available once you navigate away from the
screen on which it is first displayed.

Note: By default, client secrets created in Microsoft Entra expire after 180 days. You
must make sure you set up procedures to remind you to create a new client secret before
the current client secret expires, and to update your MyID web.oauth2 configuration with
the new client secret.

• Application (client) ID
Take a note of the client ID. You need this when configuring the web.oauth2 server.

• Directory (tenant) ID
Take a note of the tenant ID. You need this to specify the Entra authorization and token
endpoints when configuring the web.oauth2 server.

MyID Authentication Guide Page 62 of 86

6.1.2 Encrypting the client secret
Because you are going to store the client secret in a configuration text file on the server, you
must encrypt it for security purposes. MyID supports DPAPI for encrypting the client secret;
this uses the logged-on Windows user (in this case, the MyID web service user) to encrypt
the secret, and only the sameWindows user can decrypt the secret.

To encrypt the client secret:

1. On the MyID web server, log on as the user under which the web.oauth2 service runs.

By default, this is the MyIDWeb Service user; you can confirm this by checking which
user is configured for themyid.web.oauth2.pool application pool in IIS.
Note: It is important that you use this account to encrypt the secret, as no other accounts
can decrypt the secret to use it.

2. Open aWindows PowerShell command prompt, and navigate to the web.oauth2 folder.

By default, this is:
C:\Program Files\Intercede\MyID\web.oauth2\

3. Run the following PowerShell script:
.\DPAPIEncrypt.ps1 <secret>

For example:
.\DPAPIEncrypt.ps1 b5989015-bb9e-4533-874b-2b4a6a8280ed

The script outputs an encrypted copy of the secret; for example:
PS C:\Program Files\Intercede\MyID\web.oauth2> .\DPAPIEncrypt.ps1

b5989015-bb9e-4533-874b-2b4a6a8280ed

AQAAANCMnd8BFdERjHoAwE/C [...] JwWwaKXWoS3i+ulxtmjVQyudpQ==

(Encrypted output string truncated for documentation purposes.)

4. Copy the encrypted secret.

MyID Authentication Guide Page 63 of 86

6.1.3 Configuring the web.oauth2 server for Microsoft Entra
1. In a text editor, open the appsettings.Production.json file for the web service.

By default, this is:
C:\Program Files\Intercede\MyID\web.oauth2\appsettings.Production.json

This file is the override configuration file for the appsettings.json file for the web
service.

2. Add an entry to the ExternalProviders array.

If the ExternalProviders array does not exist, add it at the top level of the file. For
reference, the appsettings.json file contains an empty ExternalProviders array that
allows you to confirm its location.

"ExternalProviders":[
{
"Name":"<name>",
"LogonMechanismId":101,
"Action":"<action>",
"MicrosoftAccountOptions":{

"ClientId":"<client ID>",
"ClientSecret":"<client secret>",
"AuthorizationEndpoint":"https://login.microsoftonline.com/<tenant

ID>/oauth2/v2.0/authorize",
"TokenEndpoint":"https://login.microsoftonline.com/<tenant

ID>/oauth2/v2.0/token"
 },

"ClientSecretEncrypted":"<encrypted client secret>",
"Mappings":[

{}
]
 }
]

where:

• <name> – the label used for the authentication method in the MyID Authentication
dialog.

• <action> – one of the following actions:

• Find – (default) the user must already exist in the MyID database; the claims
from the external identity provider must identify a user already in the MyID
database.

• Create – if the user does not already exist in MyID, they are created. If the user
does exist, that same user is used.

• Update – the user must already exist in MyID. Mapped fields marked with
Update:true are updated in MyID based on the value supplied by the external
identity provider.

See section 6.4,Mapping attributes for details of setting the update options for
mapped fields.

MyID Authentication Guide Page 64 of 86

• CreateAndUpdate – if the user does not already exist in MyID, they are created.
If the user does exist, that same user is used and any fields marked with
Update:true are updated.

• <client ID> – the client ID from your Microsoft Entra configuration.

• <client secret> – the client secret you created in Microsoft Entra.

Important: For production systems, you are recommended not to include the client
secret in the appsettings.production.json file, but to encrypt the client secret
and use the ClientSecretEncrypted option instead.

• <tenant ID> – the tenant ID from your Microsoft Entra configuration. You must
include the tenant ID in both the AuthorizationEndpoint and TokenEndpoint
options.

Note: If you are using a multitenant system, you do not need to include the
AuthorizationEndpoint and TokenEndpoint options.

• <encrypted client secret> – the encrypted client secret. See section 6.1.2,
Encrypting the client secret.

Note: The LogonMechanismId is set to 101, which is fixed for Microsoft Entra.
For example:

"ExternalProviders":[
{
"Name":"Microsoft Entra ID",
"LogonMechanismId":101,
"Action":"CreateAndUpdate",
"MicrosoftAccountOptions":{

"ClientId":"bb61c9f6-9a71-42ba-a156-05db9a7a6407",
"ClientSecret":"",

"AuthorizationEndpoint":"https://login.microsoftonline.com/2fad39ef-cead-
489d-a755-c3b45c762c4a/oauth2/v2.0/authorize",

"TokenEndpoint":"https://login.microsoftonline.com/2fad39ef-cead-
489d-a755-c3b45c762c4a/oauth2/v2.0/token"
 },

"ClientSecretEncrypted":"AQAAANCMnd8BFdERjHoAwE/C [...]
JwWwaKXWoS3i+ulxtmjVQyudpQ==",

"Mappings":[
{}

]
 }
]

For further information about the settings available in the MicrosoftAccountOptions
section, see the Microsoft documentation for the ASP.NET Core MicrosoftAccountOptions
class:

learn.microsoft.com/en-
us/dotnet/api/microsoft.aspnetcore.authentication.microsoftaccount.microsoftaccou
ntoptions?view=aspnetcore-8.0

https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.microsoftaccount.microsoftaccountoptions?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.microsoftaccount.microsoftaccountoptions?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.authentication.microsoftaccount.microsoftaccountoptions?view=aspnetcore-8.0

MyID Authentication Guide Page 65 of 86

6.1.4 Configuring MyID to use Microsoft Entra
Once you have set up Microsoft Entra, and configured the web.oauth2 server, you can
configure MyID to make Microsoft Entra available as a logon mechanism.

To enable the Microsoft Entra logon mechanism:

1. In the MyID Operator Client, from theMore category, select Configuration Settings >
Security Settings.
Alternatively, in MyID Desktop, from the Configuration category, select the Security
Settings workflow.

2. Click the Logon Mechanisms tab.

3. Set the following option:

• Microsoft Entra ID – set to Yes to allow logon using Microsoft Entra.

4. Click Save changes.

To make the Microsoft Entra logon mechanism available to users:

1. In the MyID Operator Client, from theMore category, select Configuration Settings >
Edit Roles.
Alternatively, in MyID Desktop, from the Configuration category, select the Edit Roles
workflow.

2. Click Logon Methods.

3. In the Logon Mechanisms dialog, select theMicrosoft Entra ID logon mechanism for
each role you want to be able to log on using Microsoft Entra.

4. ClickOK, then click Save Changes.

6.1.5 Next steps
You can now map the attributes from the external identity provider to MyID attributes. See
section 6.4,Mapping attributes.

See also section 6.5, Example Microsoft Entra settings for a sample set of mappings for
Microsoft Entra.

MyID Authentication Guide Page 66 of 86

6.2 Configuring OpenID Connect
You can use any OpenID Connect server as an external identity provider for MyID.

Note: If you are using Google, you can use a streamlined configuration process; see section
6.3, Configuring other types of identity provider.

6.2.1 Configuring OpenID Connect as an external identity provider
You must configure your OpenID Connect system to allow the MyID web.oauth2 service to
connect to it. The specific instructions for each system are different; see your server's
documentation for details.

This section provides general principles for configuring an OpenID Connect system.

You must configure the following in your OpenID Connect system:

• Redirect URIs
Add the redirect URI for your web.oauth2 server. This is in the format:
https://<server>/web.oauth2/<identifier>

Where:

• <server> is the address of your MyID web server.

• <identifier> is an identifier for the external identity provider.

Make sure the <identifier> corresponds to the CallbackPath value you set up for the
web.oauth2 server (see section 6.2.3, Configuring the web.oauth2 server for OpenID
Connect).

For example:
https://myid.mydomain.com/web.oauth2/loginOidc121

• Client secrets
Create a client secret in your OpenID Connect system. You must take a note of this client
secret when you create it.

• Client ID
Take a note of the client ID. You need this when configuring the web.oauth2 server.

• Configuration endpoint
Find the URL that hosts the OpenID Connect configuration well-known endpoint.

This is often of the form https://<host>/<id>/v2.0/.well-known/openid-

configuration.

You need this when configuring the web.oauth2 server.

MyID Authentication Guide Page 67 of 86

6.2.2 Encrypting the client secret
Because you are going to store the client secret in a configuration text file on the server, you
must encrypt it for security purposes. MyID supports DPAPI for encrypting the client secret;
this uses the logged-on Windows user (in this case, the MyID web service user) to encrypt
the secret, and only the sameWindows user can decrypt the secret.

To encrypt the client secret:

1. On the MyID web server, log on as the user under which the web.oauth2 service runs.

By default, this is the MyIDWeb Service user; you can confirm this by checking which
user is configured for themyid.web.oauth2.pool application pool in IIS.
Note: It is important that you use this account to encrypt the secret, as no other accounts
can decrypt the secret to use it.

2. Open aWindows PowerShell command prompt, and navigate to the web.oauth2 folder.

By default, this is:
C:\Program Files\Intercede\MyID\web.oauth2\

3. Run the following PowerShell script:
.\DPAPIEncrypt.ps1 <secret>

For example:
.\DPAPIEncrypt.ps1 b5989015-bb9e-4533-874b-2b4a6a8280ed

The script outputs an encrypted copy of the secret; for example:
PS C:\Program Files\Intercede\MyID\web.oauth2> .\DPAPIEncrypt.ps1

b5989015-bb9e-4533-874b-2b4a6a8280ed

AQAAANCMnd8BFdERjHoAwE/C [...] JwWwaKXWoS3i+ulxtmjVQyudpQ==

(Encrypted output string truncated for documentation purposes.)

4. Copy the encrypted secret.

MyID Authentication Guide Page 68 of 86

6.2.3 Configuring the web.oauth2 server for OpenID Connect
1. In a text editor, open the appsettings.Production.json file for the web service.

By default, this is:
C:\Program Files\Intercede\MyID\web.oauth2\appsettings.Production.json

This file is the override configuration file for the appsettings.json file for the web
service.

2. Add an entry to the ExternalProviders array.

If the ExternalProviders array does not exist, add it at the top level of the file. For
reference, the appsettings.json file contains an empty ExternalProviders array that
allows you to confirm its location.

"ExternalProviders":[
{
"Name": "<name>",
"LogonMechanismId": <logon mechanism>,
"Action": "<action>",
"OpenIdConnectOptions": {

"ClientId": "<client ID>",
"ClientSecret": "<client secret>",
"Authority": "<authority URL>",
"ResponseType": "code",
"GetClaimsFromUserInfoEndpoint":true,
"Scope": [<scopes>],
"CallbackPath": "<callback path>",
"Prompt": "login"

 },
"ClientSecretEncrypted":"<encrypted client secret>",
"Mappings":[

{}
]
 }
]

where:

• <name> – the label used for the authentication method in the MyID Authentication
dialog.

• <logon mechanism> – the ID of the logon mechanism. MyID provides the following
logon mechanism IDs that you can use for OpenID Connect systems:

• 121 – corresponds to External IDP 1.

• 122 – corresponds to External IDP 2.

• 123 – corresponds to External IDP 3.

• <action> – one of the following actions:

• Find – (default) the user must already exist in the MyID database; the claims
from the external identity provider must identify a user already in the MyID
database.

• Create – if the user does not already exist in MyID, they are created. If the user
does exist, that same user is used.

MyID Authentication Guide Page 69 of 86

• Update – the user must already exist in MyID. Mapped fields marked with
Update:true are updated in MyID based on the value supplied by the external
identity provider.

See section 6.4,Mapping attributes for details of setting the update options for
mapped fields.

• CreateAndUpdate – if the user does not already exist in MyID, they are created.
If the user does exist, that same user is used and any fields marked with
Update:true are updated.

• <client ID> – the client ID from your Microsoft Entra configuration.

• <client secret> – the client secret you created in Microsoft Entra.

Important: For production systems, you are recommended not to include the client
secret in the appsettings.production.json file, but to encrypt the client secret
and use the ClientSecretEncrypted option instead.

• <authority URL> – the URL that hosts the OpenID configuration well-known
endpoint. For example, for Microsoft Entra, this is:
https://login.microsoftonline.com/<tenant id>/v2.0

• <scopes> – an array of scopes that you want to obtain from the external identity
provider.

For example:
"Scope": ["openid", "email", "profile", "user.read"],

Note: user.read is an Entra-specific scope that allows more user data to be
returned.

• <callback path> – the path to which the response is returned. This must
correspond to the redirect URI you set up.

For example, set the callback path to:
/loginOidc121

If your server is myid.mydomain.com, the response is returned to:
https://myid.mydomain.com/web.oauth2/loginOidc121

• <encrypted client secret> – the encrypted client secret. See section 6.2.2,
Encrypting the client secret.

MyID Authentication Guide Page 70 of 86

For example:

"ExternalProviders":[
{
"Name":"OpenID Connect",
"LogonMechanismId":121,
"Action":"CreateAndUpdate",
"OpenIdConnectOptions":{

"ClientId":"bb61c9f6-9a71-42ba-a156-05db9a7a6407",
"ClientSecret":"",
"Authority":"https://login.microsoftonline.com/2fad39ef-cead-489d-

a755-c3b45c762c4a/v2.0",
"ResponseType":"code",
"GetClaimsFromUserInfoEndpoint":true,
"Scope":[
"openid",
"email",
"profile",
"user.read"

],
"CallbackPath":"/loginOidc121",
"Prompt":"login"

 },
"ClientSecretEncrypted":"AQAAANCMnd8BFdERjHoAwE/C [...]

JwWwaKXWoS3i+ulxtmjVQyudpQ==",
"Mappings":[

{}
]
 }
]

For further information about the settings available in the OpenIdConnectOptions section,
see the Microsoft documentation for the ASP.NET Core OpenIdConnectOptions class:

learn.microsoft.com/en-
us/dotnet/api/microsoft.aspnetcore.builder.openidconnectoptions?view=aspnetcore-
1.1&viewFallbackFrom=aspnetcore-8.0

https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.openidconnectoptions?view=aspnetcore-1.1&viewFallbackFrom=aspnetcore-8.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.openidconnectoptions?view=aspnetcore-1.1&viewFallbackFrom=aspnetcore-8.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.openidconnectoptions?view=aspnetcore-1.1&viewFallbackFrom=aspnetcore-8.0

MyID Authentication Guide Page 71 of 86

6.2.4 Configuring MyID to use OpenID Connect
Once you have set up your OpenID Connect server, and configured the web.oauth2 server,
you can configure MyID to make OpenID Connect available as a logon mechanism.

To enable the OpenID Connect logon mechanism:

1. In the MyID Operator Client, from theMore category, select Configuration Settings >
Security Settings.
Alternatively, in MyID Desktop, from the Configuration category, select the Security
Settings workflow.

2. Click the Logon Mechanisms tab.

3. Set one of the following options:

• External IDP 1 – corresponds to logon mechanism ID 121.

• External IDP 2 – corresponds to logon mechanism ID 122.

• External IDP 3 – corresponds to logon mechanism ID 123.

Use the logon mechanism that corresponds to the ID you specified in the
LogonMechanismId field in the configuration file.

4. Click Save changes.

To make the OpenID Connect logon mechanism available to users:

1. In the MyID Operator Client, from theMore category, select Configuration Settings >
Edit Roles.
Alternatively, in MyID Desktop, from the Configuration category, select the Edit Roles
workflow.

2. Click Logon Methods.

3. In the Logon Mechanisms dialog, select the appropriate External IDP logon mechanism
for each role you want to be able to log on using your OpenID Connect system.

4. ClickOK, then click Save Changes.

6.2.5 Next steps
You can now map the attributes from the external identity provider to MyID attributes. See
section 6.4,Mapping attributes.

See also section 6.6, Example OpenID Connect settings for a sample set of mappings for
OpenID Connect.

MyID Authentication Guide Page 72 of 86

6.3 Configuring other types of identity provider
MyID supports any external identity provider that conforms to OpenID Connect (see section
6.2, Configuring OpenID Connect), but also provides streamlined configuration for specific
types of identity provider where there is a class to support their configuration.

For example:

• Google

Instead of using the OpenIdConnectOptions section in your configuration file, you can
use GoogleOptions, which is preconfigured for a Google external identity provider.

In most situations, you need only set the following options:
• ClientId

• ClientSecretEncrypted (or ClientSecret)

When setting the redirect URI in the external identity provider, use:
https://<server>/web.oauth2/signin-google

Where:

• <server> is the address of your MyID web server.

For example:
https://myid.mydomain.com/web.oauth2/signin-google

For a full list of configuration options, see:

learn.microsoft.com/en-
us/dotnet/api/microsoft.aspnetcore.builder.googleoptions?view=aspnetcore-
1.1&viewFallbackFrom=aspnetcore-8.0

Mapping attributes works in the same way for all identity providers; see section 6.4,Mapping
attributes.

https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.googleoptions?view=aspnetcore-1.1&viewFallbackFrom=aspnetcore-8.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.googleoptions?view=aspnetcore-1.1&viewFallbackFrom=aspnetcore-8.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.builder.googleoptions?view=aspnetcore-1.1&viewFallbackFrom=aspnetcore-8.0

MyID Authentication Guide Page 73 of 86

6.4 Mapping attributes
Once you have configured your external identity provider, you must configure MyID to
process the attributes returned in the claims, and map them to MyID attributes.

6.4.1 Finding a list of available claims
To determine which claims are returned from your external identity provider, you can enable
logging for the web.oauth2 service.

See theMyID REST and authentication web services section in the Configuring Logging
guide for details of enabling logging. Set the log level to INFO.

Once you have edited the Log.config file, add the following minimal Mappings section to the
entry for your external identity provider in the ExternalProviders array of the
appsettings.Production.json file for the web.oauth2 service:

"Mappings":[
{
"Match":{

 },
"Attributes":[

{
"From":"givenName",
"To":"FirstName"

 },
{
"From":"surname",
"To":"Surname"

 },
{
"From":"",
"To":"Roles",
"Static":"<role name='Cardholder' scope='1'/>"

 },
{
"From":"",
"To":"GroupName",
"Static":"Imported From External IDP"

 },
{
"From":"",
"To":"ParentGroupName",
"Static":"External"

 }
]
 }
]

This set of mappings provides a minimal set of data to allow the web.oauth2 service to
attempt to carry out a logon using the external identity provider; it does not allow you to log
on, but allows MyID to retrieve the claims information from the external identity provider.

Configuring Logging.pdf

MyID Authentication Guide Page 74 of 86

Save the file, then recycle the application pool in IIS to ensure that the web service is using
the latest settings.

1. On the MyID web server, in Internet Information Services (IIS) Manager, select
Application Pools.

2. Right-click themyid.web.oauth2.pool application pool, then from the pop-up menu click
Recycle.

You can now attempt to log on to MyID using the external identity provider. The attempt fails
with error OA10077, but the log displays a list of the claims returned from the identity provider
that you can use to set up your mappings.

For example:

<LogEntry Type="InfoMessage">
<TimeStamp>2024-02-22 14:42:15.560</TimeStamp>
<ManagedThreadID>5</ManagedThreadID>
<Class>Intercede.MyID.Logging.Log4Net.Log4NetLogger</Class>
<Method>Microsoft.Extensions.Logging.ILogger.Log</Method>
<Message>List of all claims available from provider: @odata.context:

https://graph.microsoft.com/v1.0/$metadata#users/$entity,
 businessPhones: ["259"],
 displayName: Susan Smith,
 givenName: Susan,
 jobTitle: Business Analyst,
 mail: Susan.Smith@example.com,
 mobilePhone: ,
 officeLocation: Headquarters,
 preferredLanguage: ,
 surname: Smith,
 userPrincipalName: Susan.Smith@example.com,
 id: b0e777c5-02ff-4669-9c99-18780b334bd7</Message>
</LogEntry>

6.4.2 Matching attributes
You can use the Match option to restrict the users who can authenticate using the external
identity provider by specifying a value for one of the claims returned.

For example, you may want to allow access only to people where the officeLocation claim
is set to Headquarters:

"Match": {
"officeLocation": "Headquarters"

},

MyID Authentication Guide Page 75 of 86

6.4.3 Mapping attributes
You can include multiple items in the Attributes array. Each item can have the following
properties:
• From

The name of the claim in the external identity provider. The available claims are different
for each identity provider; see section 6.4.1, Finding a list of available claims for
assistance in determining which claims are available to you.

• To

The name of the field in MyID to which to map the attribute. This must match a column
name in the vPeopleUserAccounts view in the MyID database.

If you are creating a user in MyID, you must provide mappings for the FirstName,
Surname, or both fields in MyID. You must also provide the FullName; for example:

{
"From": "displayName",
"To": "FullName"

},
{

"From": "givenName",
"To": "FirstName"

},
{

"From": "surname",
"To": "Surname"

},

• Mandatory

If set to true, this claim must be present in the external information for the user to be
valid.

MyID Authentication Guide Page 76 of 86

• Unique

If set to true, this value must be unique in MyID for the user to be valid.

Important: This is used as the primary lookup value when searching for the user in MyID;
youmust include at least one Unique attribute.

You are recommended to use a unique reference (such as a GUID) supplied from the
external identity provider; you can store this value in a MyID attribute to create a link
between the user in the external identity provider and MyID.

MyID provides the following fields:
• XuSYSExternalReferenceId1

• XuSYSExternalReferenceId2

• XuSYSExternalReferenceId3

that you can use to store the unique ID. If you have up to three external identity providers,
you can use a different field for each.

For example:

{
"From": "id",
"To": "XuSYSExternalReferenceId1",
"Mandatory": true,
"Unique": true,
"Update": true

},

• Update

If set to true, and the Action configured for the provider is Update or CreateAndUpdate,
MyID uses the information from the claim to update the user record in the MyID database.

• LookupExisting

If the primary lookup value (that is, the claim set to Unique) is unable to find a match, this
acts as a fallback option. If there are still no matching users for LookupExisting, the
operation moves on to create a new user or to fail logon, depending on the Action
setting. This feature is intended for the case where a user may have been created not
from the external identity provider (so the Unique reference is not yet set), but you want
to look up an existing user in MyID (for example, by UserPrincipalName or Email) and
then update the Unique reference to create the permanent link.

For example:

{
"From":"userPrincipalName",
"To":"UserPrincipalName",
"LookupExisting":true,
"LdapSync":true

}

MyID Authentication Guide Page 77 of 86

• LdapSync

If set to true, the search operation also checks the LDAP for valid matching users to
import additional user data from the directory, using the field specified in the To property
and the value specified for this attribute. The value of the To property must be a value in
the LDAPLookUp table.

Important: If you enable LookupExisting or LdapSync on an attribute, you must be
certain that the source of that data from the external identity provider is trustworthy. If you
use these features and the source of the mapped attribute used for LookupExisting or
LdapSync can be controlled by the end user or another untrusted individual, it can enable
the user authenticating with that identity provider to impersonate a user in MyID, either by
assigning the external identity provider authentication mechanism to that existing user
account or by importing data (such as the DN) from the LDAP that belongs to another
person who is looked up by that attribute.

• Static

If there is extra information that you needs to provide that does not come from the
external provider, such as MyID roles and groups, you can include the information in a
Static attribute.

If you are creating a user in MyID, you must provide static mappings for the roles you
want to set for the user, and a group into which you want to place the user.

To set roles for a user, you must provide XML that describes the roles and scope you
want to provide. You can provide multiple roles. Use the following format:
<role name ='name' scope='scope'/>

where:

• name – the name of the role from the Name field in the UserProfiles table in the MyID
database.

• scope – the ID of the scope. You can use the following:

• 1 – Self

• 2 – Department

• 3 – Division

• 4 – All

For example:

{
"From": "",
"To": "Roles",
"Static": "<role name='Cardholder' scope='1'/><role name='PasswordUser

scope='2'/>"
}

MyID Authentication Guide Page 78 of 86

To set a group for a user, you must set the To attribute to GroupName and the Static
value to the name of the group. To set the parent group of the group you are setting for a
user, you must set the To attribute to ParentGroupName, and the Static value to the
name of the parent group.

For example:

{
"From": "",
"To": "GroupName",
"Static": "Imported Group"

},
{

"From": "",
"To": "ParentGroupName",
"Static": "External"

}

MyID Authentication Guide Page 79 of 86

6.5 Example Microsoft Entra settings
The following is an example set of configuration options and mapping attributes for Microsoft
Entra. You can use this as a starting point for your own configuration in the
appsettings.Production.json file for the web.oauth2 service; see section 6.1, Configuring
Microsoft Entra.

"ExternalProviders":[
{
"Name":"Microsoft Entra ID",
"LogonMechanismId":101,
"Action":"CreateAndUpdate",
"MicrosoftAccountOptions":{

"ClientId":"bb61c9f6-9a71-42ba-a156-05db9a7a6407",
"ClientSecret":"",
"AuthorizationEndpoint":"https://login.microsoftonline.com/2fad39ef-cead-489d-a755-

c3b45c762c4a/oauth2/v2.0/authorize",
"TokenEndpoint":"https://login.microsoftonline.com/2fad39ef-cead-489d-a755-

c3b45c762c4a/oauth2/v2.0/token"
 },

"ClientSecretEncrypted":"AQAAANCMnd8BFdERjHoAwE/C [...] JwWwaKXWoS3i+ulxtmjVQyudpQ==",
"Mappings":[

{
"Match":{

"officeLocation":"Headquarters"
 },

"Attributes":[
{
"From":"id",
"To":"XuSYSExternalReferenceId1",
"Mandatory":true,
"Unique":true,
"Update":true

 },
{
"From":"displayName",
"To":"FullName"

 },
{
"From":"givenName",
"To":"FirstName"

 },
{
"From":"surname",
"To":"Surname"

 },
{
"From":"userPrincipalName",
"To":"UserPrincipalName",
"LookupExisting":true,
"LdapSync":true

 },
{
"From":"mail",
"To":"Email"

 },
{
"From":"",
"To":"Roles",

MyID Authentication Guide Page 80 of 86

"Static":"<role name='Cardholder' scope='1'/><role name='PasswordUser
scope='2'/>"
 },

{
"From":"",
"To":"GroupName",
"Static":"Imported From Microsoft"

 },
{
"From":"",
"To":"ParentGroupName",
"Static":"External"

 }
]
 }
]
 }
]

MyID Authentication Guide Page 81 of 86

6.6 Example OpenID Connect settings
The following are example sets of configuration options and mapping attributes for OpenID
Connect. You can use these as a starting point for your own configuration in the
appsettings.Production.json file for the web.oauth2 service; see section 6.2, Configuring
OpenID Connect.

6.6.1 OpenID Connect settings for Microsoft Entra

"ExternalProviders":[
{
"Name":"OpenID Connect",
"LogonMechanismId":121,
"Action":"CreateAndUpdate",
"OpenIdConnectOptions":{
"ClientId":"bb61c9f6-9a71-42ba-a156-05db9a7a6407",
"ClientSecret":"",
"Authority":"https://login.microsoftonline.com/2fad39ef-cead-489d-a755-

c3b45c762c4a/v2.0",
"ResponseType":"code",
"GetClaimsFromUserInfoEndpoint":true,
"Scope":[
"openid",
"email",
"profile",
"user.read"

],
"CallbackPath":"/loginOidc121",
"Prompt":"login"

 },
"ClientSecretEncrypted":"AQAAANCMnd8BFdERjHoAwE/C [...] JwWwaKXWoS3i+ulxtmjVQyudpQ==",
"Mappings":[

{
"Match":{

 },
"Attributes":[

{
"From":"oid",
"To":"XuSYSExternalReferenceId2",
"Mandatory":true,
"Unique":true,
"Update":true

 },
{
"From":"name",
"To":"FullName"

 },
{
"From":"given_name",
"To":"FirstName"

 },
{
"From":"family_name",
"To":"Surname"

 },
{
"From":"",

MyID Authentication Guide Page 82 of 86

"To":"Roles",
"Static":"<role name='Cardholder' scope='1'/>"

 },
{
"From":"",
"To":"GroupName",
"Static":"Imported From OpenID"

 },
{
"From":"",
"To":"ParentGroupName",
"Static":"External"

 }
]
 }
]
 }
]

MyID Authentication Guide Page 83 of 86

6.6.2 OpenID Connect settings for Okta

"ExternalProviders":[
{
"Name":"Okta Dev",
"LogonMechanismId":122,
"Action":"CreateAndUpdate",
"OpenIdConnectOptions":{

"ClientId":"0obr57pqsgospYEYr8A1",
"Authority":"https://myownoktadomain.okta.com",
"ResponseType":"code",
"GetClaimsFromUserInfoEndpoint":true,
"Scope":[
"openid",
"email",
"profile"

],
"CallbackPath":"/loginOidc122",
"Prompt":"login"

 },
"ClientSecretEncrypted":"AQAAANCMnd8BFdERjHoAwE/C [...] JwWwaKXWoS3i+ulxtmjVQyudpQ==",
"Mappings":[

{
"Match":{

"email_verified":"True"
 },

"Attributes":[
{
"From":"sub",
"To":"XuSYSExternalReferenceId3",
"Mandatory":true,
"Unique":true,
"Update":true

 },
{
"From":"name",
"To":"FullName",
"Update":true

 },
{
"From":"family_name",
"To":"Surname",
"Update":true

 },
{
"From":"given_name",
"To":"FirstName"

 },
{
"From":"email",
"To":"Email",
"LookupExisting":true,
"Update":true

 },
{
"From":"",
"To":"Roles",
"Static":"<role name='Cardholder' scope='1'/>"

MyID Authentication Guide Page 84 of 86

 },
{
"From":"",
"To":"GroupName",
"Static":"Imported From Okta"

 },
{
"From":"",
"To":"ParentGroupName",
"Static":"External"

 }
]
 }
]
 }
]

MyID Authentication Guide Page 85 of 86

7 Reporting on the authentication database
The AuthenticationAudits table in the MyID authentication database contains audited
information on any attempts to use the MyID authentication service.

You can use the information in this table to generate reports on the authentication activities of
your system.

The AuthenticationAudits table has the following format:

Field Format Description
Id int Automatically incrementing primary key

field.
LogonMechanism nvarchar(20) The type of credential used for the logon

attempt; for example:
• Fido

• Passphrase

• SmartcardMCS

UserAccountId int The user account relating to the user
attempting to log on.

This is the UserAccounts.ID field in the
main MyID database.

UserAccountObjectId uniqueidentifier The user account relating to the user
attempting to log on.

This is the UserAccounts.ObjectID field in
the main MyID database.

DeviceId int The device relating to the device being
used to log on.

This is the Devices.ID field in the main
MyID database.

DeviceTypeName nvarchar(50) The device type name relating to the device
being used to log on.

This is the Devices.DeviceTypeName field
in the main MyID database.

DeviceSerialNumber nvarchar(50) The device serial number relating to the
device being used to log on.

This is the Devices.SerialNumber field in
the main MyID database.

LogonDate datetime The date and time that this attempt was
recorded.

MyID Authentication Guide Page 86 of 86

Field Format Description
Status nvarchar(20) The status of this logon attempt; for

example:
• success

• failure

ReadableMessage nvarchar(max) For failed attempts to log on, this contains
extra information that you can use to
diagnose why a logon failed.

Error codes are included in this information;
see theMyID Operator Client error codes
section in the Error Code Reference
guide.

LogonName nvarchar(256) The logon name of the user attempting to
log on.

This is the UserAccounts.LogonName field
in the main MyID database.

ClientId nvarchar(100) The OAuth client Id in use; for example:
• myid.idms

• myid.adfs

• myid.operatorclient

Error Code Reference.pdf

	MyID Authentication Guide
	Copyright
	Conventions used in this document
	Contents
	1 Introduction
	2 Setting up the standalone authentication service
	2.1 Installing the standalone authentication service
	2.2 Configuring the standalone authentication service
	2.3 Logging the standalone authentication service

	3 MyID AD FS Adapter OAuth
	3.1 Overview
	3.2 AD FS Adapter OAuth prerequisites
	3.3 Setting up the ADFS Auth web service
	3.3.1 Installing the ADFS Auth web service
	3.3.2 Configuring the ADFS Auth web service
	3.3.3 Configuring the AD FS server to communicate with the ADFS Auth web service
	3.3.4 Logging the ADFS Auth web service

	3.4 Configuring the standalone authentication service for AD FS
	3.4.1 Generating a shared secret
	3.4.2 Updating the web.oauth2.ext configuration file

	3.5 Installing the AD FS Adapter OAuth
	3.5.1 Uninstalling the AD FS Adapter OAuth

	3.6 Managing the AD FS Adapter OAuth
	3.6.1 Configuration file
	3.6.2 Encrypting the client secret
	3.6.3 Managing themes
	3.6.4 Logging for the AD FS Adapter OAuth

	3.7 Troubleshooting

	4 Authenticating using OpenID Connect
	4.1 Configuring the web service for OpenID Connect
	4.1.1 Creating a shared secret
	4.1.2 Editing the configuration file
	4.1.3 Configuring authentication to skip the MyID Authentication screen

	4.2 Obtaining an identity token
	4.2.1 Generating a PKCE code verifier and code challenge
	4.2.2 Requesting an authorization code
	4.2.3 Requesting an identity token

	4.3 Troubleshooting

	5 Authenticating for embedded Operator Client screens
	5.1 Configuring web.oauth2 for user-based authentication
	5.2 Obtaining an access token
	5.2.1 Example requests

	5.3 Posting the access token

	6 Setting up an external identity provider
	6.1 Configuring Microsoft Entra
	6.1.1 Configuring Microsoft Entra as an external identity provider
	6.1.2 Encrypting the client secret
	6.1.3 Configuring the web.oauth2 server for Microsoft Entra
	6.1.4 Configuring MyID to use Microsoft Entra
	6.1.5 Next steps

	6.2 Configuring OpenID Connect
	6.2.1 Configuring OpenID Connect as an external identity provider
	6.2.2 Encrypting the client secret
	6.2.3 Configuring the web.oauth2 server for OpenID Connect
	6.2.4 Configuring MyID to use OpenID Connect
	6.2.5 Next steps

	6.3 Configuring other types of identity provider
	6.4 Mapping attributes
	6.4.1 Finding a list of available claims
	6.4.2 Matching attributes
	6.4.3 Mapping attributes

	6.5 Example Microsoft Entra settings
	6.6 Example OpenID Connect settings
	6.6.1 OpenID Connect settings for Microsoft Entra
	6.6.2 OpenID Connect settings for Okta

	7 Reporting on the authentication database

